102 research outputs found
On the use of asymmetric PSF on NIR images of crowded stellar fields
We present data collected using the camera PISCES coupled with the Firt Light
Adaptive Optics (FLAO) mounted at the Large Binocular Telescope (LBT). The
images were collected using two natural guide stars with an apparent magnitude
of R<13 mag. During these observations the seeing was on average ~0.9". The AO
performed very well: the images display a mean FWHM of 0.05 arcsec and of 0.06
arcsec in the J- and in the Ks-band, respectively. The Strehl ratio on the
quoted images reaches 13-30% (J) and 50-65% (Ks), in the off and in the central
pointings respectively. On the basis of this sample we have reached a J-band
limiting magnitude of ~22.5 mag and the deepest Ks-band limiting magnitude ever
obtained in a crowded stellar field: Ks~23 mag.
J-band images display a complex change in the shape of the PSF when moving at
larger radial distances from the natural guide star. In particular, the stellar
images become more elongated in approaching the corners of the J-band images
whereas the Ks-band images are more uniform. We discuss in detail the strategy
used to perform accurate and deep photometry in these very challenging images.
In particular we will focus our attention on the use of an updated version of
ROMAFOT based on asymmetric and analytical Point Spread Functions.
The quality of the photometry allowed us to properly identify a feature that
clearly shows up in NIR bands: the main sequence knee (MSK). The MSK is
independent of the evolutionary age, therefore the difference in magnitude with
the canonical clock to constrain the cluster age, the main sequence turn off
(MSTO), provides an estimate of the absolute age of the cluster. The key
advantage of this new approach is that the error decreases by a factor of two
when compared with the classical one. Combining ground-based Ks with space
F606W photometry, we estimate the absolute age of M15 to be 13.70+-0.80 Gyr.Comment: 15 pages, 7 figures, presented at the SPIE conference 201
Numerical control matrix rotation for the LINC-NIRVANA Multi-Conjugate Adaptive Optics system
LINC-NIRVANA will realize the interferometric imaging focal station of the
Large Binocular Telescope. A double Layer Oriented multi-conjugate adaptive
optics system assists the two arms of the interferometer, supplying high order
wave-front correction. In order to counterbalance the field rotation,
mechanical derotation for the two ground wave-front sensors, and optical
derotators for the mid-high layers sensors fix the positions of the focal
planes with respect to the pyramids aboard the wave-front sensors. The
derotation introduces pupil images rotation on the wavefront sensors: the
projection of the deformable mirrors on the sensor consequently change. The
proper adjustment of the control matrix will be applied in real-time through
numerical computation of the new matrix. In this paper we investigate the
temporal and computational aspects related to the pupils rotation, explicitly
computing the wave-front errors that may be generated.Comment: 6 pages, 2 figures, presented at SPIE Symposium "Astronomical
Telescopes and Instrumentation'' conference "Adaptive Optics Systems
II'',Sunday 27 June 2010, San Diego, California, US
New Extinction and Mass Estimates from Optical Photometry of the Very Low Mass Brown Dwarf Companion CT Chamaeleontis B with the Magellan AO System
We used the Magellan adaptive optics (MagAO) system and its VisAO CCD camera
to image the young low mass brown dwarf companion CT Chamaeleontis B for the
first time at visible wavelengths. We detect it at r', i', z', and Ys. With our
new photometry and Teff~2500 K derived from the shape its K-band spectrum, we
find that CT Cha B has Av = 3.4+/-1.1 mag, and a mass of 14-24 Mj according to
the DUSTY evolutionary tracks and its 1-5 Myr age. The overluminosity of our r'
detection indicates that the companion has significant Halpha emission and a
mass accretion rate ~6*10^-10 Msun/yr, similar to some substellar companions.
Proper motion analysis shows that another point source within 2" of CT Cha A is
not physical. This paper demonstrates how visible wavelength AO photometry (r',
i', z', Ys) allows for a better estimate of extinction, luminosity, and mass
accretion rate of young substellar companions.Comment: Accepted for publication in ApJ; 6 figure
The First Circumstellar Disk Imaged in Silhouette with Adaptive Optics: MagAO Imaging of Orion 218-354
We present high resolution adaptive optics (AO) corrected images of the
silhouette disk Orion 218-354 taken with Magellan AO (MagAO) and its visible
light camera, VisAO, in simultaneous differential imaging (SDI) mode at
H-alpha. This is the first image of a circumstellar disk seen in silhouette
with adaptive optics and is among the first visible light adaptive optics
results in the literature. We derive the disk extent, geometry, intensity and
extinction profiles and find, in contrast with previous work, that the disk is
likely optically-thin at H-alpha. Our data provide an estimate of the column
density in primitive, ISM-like grains as a function of radius in the disk. We
estimate that only ~10% of the total sub-mm derived disk mass lies in
primitive, unprocessed grains. We use our data, Monte Carlo radiative transfer
modeling and previous results from the literature to make the first
self-consistent multiwavelength model of Orion 218-354. We find that we are
able to reproduce the 1-1000micron SED with a ~2-540AU disk of the size,
geometry, small vs. large grain proportion and radial mass profile indicated by
our data. This inner radius is a factor of ~15 larger than the sublimation
radius of the disk, suggesting that it is likely cleared in the very interior.Comment: 14 pages, 4 figures, ApJL accepte
New Extinction and Mass Estimates of the Low-mass Companion 1RXS 1609 B with the Magellan AO System: Evidence of an Inclined Dust Disk
We used the Magellan adaptive optics system to image the 11 Myr substellar
companion 1RXS 1609 B at the bluest wavelengths to date (z' and Ys). Comparison
with synthetic spectra yields a higher temperature than previous studies of
and significant dust extinction of
mag. Mass estimates based on the DUSTY tracks gives
0.012-0.015 Msun, making the companion likely a low-mass brown dwarf surrounded
by a dusty disk. Our study suggests that 1RXS 1609 B is one of the 25% of Upper
Scorpius low-mass members harboring disks, and it may have formed like a star
and not a planet out at 320 AU.Comment: 5 pages, 4 figures; accepted to ApJ
The numerical simulation tool for the MAORY multiconjugate adaptive optics system
The Multiconjugate Adaptive Optics RelaY (MAORY) is and Adaptive Optics
module to be mounted on the ESO European-Extremely Large Telescope (E-ELT). It
is a hybrid Natural and Laser Guide System that will perform the correction of
the atmospheric turbulence volume above the telescope feeding the Multi-AO
Imaging Camera for Deep Observations Near Infrared spectro-imager (MICADO). We
developed an end-to-end Monte- Carlo adaptive optics simulation tool to
investigate the performance of a the MAORY and the calibration, acquisition,
operation strategies. MAORY will implement Multiconjugate Adaptive Optics
combining Laser Guide Stars (LGS) and Natural Guide Stars (NGS) measurements.
The simulation tool implements the various aspect of the MAORY in an end to end
fashion. The code has been developed using IDL and uses libraries in C++ and
CUDA for efficiency improvements. Here we recall the code architecture, we
describe the modeled instrument components and the control strategies
implemented in the code.Comment: 6 pages, 1 figure, Proceeding 9909 310 of the conference SPIE
Astronomical Telescopes + Instrumentation 2016, 26 June 1 July 2016
Edinburgh, Scotland, U
Optical calibration of large format adaptive mirrors
Adaptive (or deformable) mirrors are widely used as wavefront correctors in
adaptive optics systems. The optical calibration of an adaptive mirror is a
fundamental step during its life-cycle: the process is in facts required to
compute a set of known commands to operate the adaptive optics system, to
compensate alignment and non common-path aberrations, to run chopped or
field-stabilized acquisitions. In this work we present the sequence of
operations for the optical calibration of adaptive mirrors, with a specific
focus on large aperture systems such as the adaptive secondaries. Such systems
will be one of the core components of the extremely large telescopes.
Beyond presenting the optical procedures, we discuss in detail the actors,
their functional requirements and the mutual interactions. A specific emphasys
is put on automation, through a clear identification of inputs, outputs and
quality indicators for each step: due to a high degrees-of-freedom count
(thousands of actuators), an automated approach is preferable to constraint the
cost and schedule. In the end we present some algorithms for the evaluation of
the measurement noise; this point is particularly important since the
calibration setup is typically a large facility in an industrial environment,
where the noise level may be a major show-stopper.Comment: 50 pages. Final report released for the project "Development and test
of a new CGH-based technique with automated calibration for future large
format Adaptive-Optics Mirrors", funded under the INAF -TecnoPRIN 2010.
Published by INAF - Osservatorio Astrofisico di Arcetri. ISBN:
978-88-908876-1-
Directly Imaged L-T Transition Exoplanets in the Mid-Infrared
Gas-giant planets emit a large fraction of their light in the mid-infrared
(3m), where photometry and spectroscopy are critical to our
understanding of the bulk properties of extrasolar planets. Of particular
importance are the L and M-band atmospheric windows (3-5m), which are the
longest wavelengths currently accessible to ground-based, high-contrast
imagers. We present binocular LBT AO images of the HR 8799 planetary system in
six narrow-band filters from 3-4m, and a Magellan AO image of the 2M1207
planetary system in a broader 3.3m band. These systems encompass the five
known exoplanets with luminosities consistent with LT transition
brown dwarfs. Our results show that the exoplanets are brighter and have
shallower spectral slopes than equivalent temperature brown dwarfs in a
wavelength range that contains the methane fundamental absorption feature
(spanned by the narrowband filters and encompassed by the broader 3.3m
filter). For 2M1207 b, we find that thick clouds and non-equilibrium chemistry
caused by vertical mixing can explain the object's appearance. For the HR 8799
planets, we present new models that suggest the atmospheres must have patchy
clouds, along with non-equilibrium chemistry. Together, the presence of a
heterogeneous surface and vertical mixing presents a picture of dynamic
planetary atmospheres in which both horizontal and vertical motions influence
the chemical and condensate profiles.Comment: Accepted to Ap
- …
