9 research outputs found
Machine learning framework for investigating nano- and micro-scale particle diffusion in colonic mucus
Abstract Biosimilar artificial mucus models that mimic native mucus facilitate efficient, lab-based drug diffusion studies, addressing the costly and challenging preclinical phase of drug development, especially for nano- and micro-scale particle-based colonic drug delivery. This study presents a machine-learning-driven framework that integrates microrheological features into diffusional fingerprinting to characterize nano- and micro-scale particle diffusion patterns in mucus and assess the effect of mucus microrheology on such movements. We investigated the diffusion of fluorescent-labeled polystyrene particles in native pig mucus and two artificial mucus models. Particles (100, 200, and 1000 nm in diameter) with carboxylate- or amine-modified surfaces were tracked during passive diffusion. From each particle trajectory, 20 features —including microrheology-based parameters— were extracted. Based on these features, seven supervised machine learning models were applied to classify or identify similarities among mucus hydrogels. Of these, gradient boosting achieved the highest accuracy. SHapley Additive exPlanations analysis identified creep compliance as the most influential feature in distinguishing the mucus models. In native mucus, smaller negatively charged nanoparticles exhibited the highest mobility, with fewer particles being in the immobile and subdiffusive states. Microrheology data further indicated that larger particles experienced greater restriction owing to the elastic properties of native mucus. In contrast, smaller particles interacted more with the viscous liquid phase. A comprehensive feature-wide analysis revealed that hydroxyethyl cellulose (HEC)-based artificial mucus more closely resembled native pig mucus than the polyacrylic acid-based model. In conclusion, the machine-learning-driven fingerprinting approach, incorporating microrheological features, successfully differentiated the microstructural characteristics and rheological properties of the three mucus models. It also supported the selection of HEC-based artificial mucus as a viable substitute for native colonic mucus. Graphical abstrac
Corrigendum to “The interplay of signaling pathway in endothelial cells—Matrix stiffness dependency with targeted-therapeutic drugs” [BBA-Mol. Basis Dis. 1866 (2020) 165645]
Progress and prospects of mechanotransducers in shear stress-sensitive signaling pathways in association with arteriovenous malformation
Optimized Artificial Colonic Mucus Enabling Physiologically Relevant Diffusion Studies of Drugs, Particles, and Delivery Systems
Development of oral drug delivery systems that penetrate the colonic mucus remains challenging. Artificial models of porcine colonic mucus have been developed that mimic the rheology and viscosity of the native mucus and its contents of mucins, protein, and lipids. However, they are less representative with regard to the zeta potential, a factor of importance for charged molecules and particles. This study therefore aimed to improve the existing porcine artificial colonic mucus model by exchanging the polymer backbone (used for viscosity) to more closely mimic the charge of porcine native colonic mucus. Polymers studied were poly(acrylic acid), hydroxyethylcellulose, sodium hyaluronate, sodium alginate, and pectin. The resulting porcine artificial colonic mucus was assayed for apparent viscosity, storage modulus, pH, water content, zeta potential, and pore size. The two best-performing polymers (poly(acrylic acid) and hydroxyethylcellulose) were then assayed with diffusion of FITC-dextran, particle tracking of nanoparticles, and binding of FITC-dextran and contrasted to data generated in porcine native colonic mucus (PNCM). Of the two polymers, PACM based on HEC generated zeta potential and binding kinetics similar to those of PNCM. We conclude that the choice of polymer in PACMs is critical for improving their use in drug development. The extensive characterization of the PACMs further points toward the importance of complementary techniques to determine rheological characteristics, mesh, and pore size
The interplay of signaling pathway in endothelial cells—matrix stiffness dependency with targeted-therapeutic drugs
Development of a canine artificial colonic mucus model for drug diffusion studies
Colonic mucus is a key factor in the colonic environment because it may affect drug absorption. Due to the similarity of human and canine gastrointestinal physiology, dogs are an established preclinical species for the assessment of controlled release formulations. Here we report the development of an artificial colonic mucus model to mimic the native canine one. In vitro models of the canine colonic environment can provide insights for early stages of drug development and contribute to the implementation of the 3Rs (refinement, reduction, and replacement) of animal usage in the drug development process. Our artificial colonic mucus could predict diffusion trends observed in native mucus and was successfully implemented in microscopic and macroscopic assays to study macromolecular permeation through the mucus. The traditional Transwell set up was optimized with the addition of a nylon filter to ensure homogenous representation of the mucus barrier in vitro. In conclusion, the canine artificial colonic mucus can be used to study drug permeation across the mucus and its flexibility allows its use in various set ups depending on the nature of the compound under investigation and equipment availability.SweDeliverCOLOTA
FoxF1 is Required for Ciliogenesis and Distribution of Sonic Hedgehog Signaling Components in Cilium
Background:In vertebrates, cilium is crucial for Hedgehog signaling transduction. Forkhead box transcriptional factor FoxF1 is reported to be associated with Sonic Hedgehog (Shh) signaling in many cases. However, the role of FoxF1 in cilium remains unknown. Here, we showed an essential role of FoxF1 in the regulation of ciliogenesis and in the distribution of Shh signaling components in cilium.Methods:NIH/3T3 cells were serum starved for 24h to induce cilium. Meanwhile, shRNA was used to knockdown the FoxF1 expression in the cells and CRISPR/Cas9 was used to generate the FoxF1 zebrafish mutant. The mRNA and protein expression of indicated genes were detected by the qRT-PCR and western blot, respectively. Immunofluorescence staining was performed to detect the cilium and Shh components distribution.Results:FoxF1 knockdown decreased the cilium length in NIH/3T3 cells. Meanwhile, the disruption of FoxF1 function inhibited the expression of cilium-related genes and caused an abnormal distribution of Shh components in the cilium. Furthermore, homozygous FoxF1 mutants exhibited defective development of pronephric cilium in early zebrafish embryos.Conclusion:Together, our data illustrated that FoxF1 is required for ciliogenesis in vitro and in vivo and for the proper localization of Shh signaling components in cilium.</jats:sec
