5,435 research outputs found

    Lyapunov exponents from geodesic spread in configuration space

    Get PDF
    The exact form of the Jacobi -- Levi-Civita (JLC) equation for geodesic spread is here explicitly worked out at arbitrary dimension for the configuration space manifold M_E = {q in R^N | V(q) < E} of a standard Hamiltonian system, equipped with the Jacobi (or kinetic energy) metric g_J. As the Hamiltonian flow corresponds to a geodesic flow on (M_E,g_J), the JLC equation can be used to study the degree of instability of the Hamiltonian flow. It is found that the solutions of the JLC equation are closely resembling the solutions of the standard tangent dynamics equation which is used to compute Lyapunov exponents. Therefore the instability exponents obtained through the JLC equation are in perfect quantitative agreement with usual Lyapunov exponents. This work completes a previous investigation that was limited only to two-degrees of freedom systems.Comment: REVTEX file, 10 pages, 2 figure

    Phase transitions as topology changes in configuration space: an exact result

    Full text link
    The phase transition in the mean-field XY model is shown analytically to be related to a topological change in its configuration space. Such a topology change is completely described by means of Morse theory allowing a computation of the Euler characteristic--of suitable submanifolds of configuration space--which shows a sharp discontinuity at the phase transition point, also at finite N. The present analytic result provides, with previous work, a new key to a possible connection of topological changes in configuration space as the origin of phase transitions in a variety of systems.Comment: REVTeX file, 5 pages, 1 PostScript figur

    Topological aspects of geometrical signatures of phase transitions

    Get PDF
    Certain geometric properties of submanifolds of configuration space are numerically investigated for classical lattice phi^4 models in one and two dimensions. Peculiar behaviors of the computed geometric quantities are found only in the two-dimensional case, when a phase transition is present. The observed phenomenology strongly supports, though in an indirect way, a recently proposed topological conjecture about a topology change of the configuration space submanifolds as counterpart of a phase transition.Comment: REVTEX file, 4 pages, 5 figure

    Hamiltonian dynamics and geometry of phase transitions in classical XY models

    Full text link
    The Hamiltonian dynamics associated to classical, planar, Heisenberg XY models is investigated for two- and three-dimensional lattices. Besides the conventional signatures of phase transitions, here obtained through time averages of thermodynamical observables in place of ensemble averages, qualitatively new information is derived from the temperature dependence of Lyapunov exponents. A Riemannian geometrization of newtonian dynamics suggests to consider other observables of geometric meaning tightly related with the largest Lyapunov exponent. The numerical computation of these observables - unusual in the study of phase transitions - sheds a new light on the microscopic dynamical counterpart of thermodynamics also pointing to the existence of some major change in the geometry of the mechanical manifolds at the thermodynamical transition. Through the microcanonical definition of the entropy, a relationship between thermodynamics and the extrinsic geometry of the constant energy surfaces ΣE\Sigma_E of phase space can be naturally established. In this framework, an approximate formula is worked out, determining a highly non-trivial relationship between temperature and topology of the ΣE\Sigma_E. Whence it can be understood that the appearance of a phase transition must be tightly related to a suitable major topology change of the ΣE\Sigma_E. This contributes to the understanding of the origin of phase transitions in the microcanonical ensemble.Comment: in press on Physical Review E, 43 pages, LaTeX (uses revtex), 22 PostScript figure

    Riemannian theory of Hamiltonian chaos and Lyapunov exponents

    Full text link
    This paper deals with the problem of analytically computing the largest Lyapunov exponent for many degrees of freedom Hamiltonian systems. This aim is succesfully reached within a theoretical framework that makes use of a geometrization of newtonian dynamics in the language of Riemannian geometry. A new point of view about the origin of chaos in these systems is obtained independently of homoclinic intersections. Chaos is here related to curvature fluctuations of the manifolds whose geodesics are natural motions and is described by means of Jacobi equation for geodesic spread. Under general conditions ane effective stability equation is derived; an analytic formula for the growth-rate of its solutions is worked out and applied to the Fermi-Pasta-Ulam beta model and to a chain of coupled rotators. An excellent agreement is found the theoretical prediction and the values of the Lyapunov exponent obtained by numerical simulations for both models.Comment: RevTex, 40 pages, 8 PostScript figures, to be published in Phys. Rev. E (scheduled for November 1996

    Geometry of dynamics, Lyapunov exponents and phase transitions

    Get PDF
    The Hamiltonian dynamics of classical planar Heisenberg model is numerically investigated in two and three dimensions. By considering the dynamics as a geodesic flow on a suitable Riemannian manifold, it is possible to analytically estimate the largest Lyapunov exponent in terms of some curvature fluctuations. The agreement between numerical and analytical values for Lyapunov exponents is very good in a wide range of temperatures. Moreover, in the three dimensional case, in correspondence with the second order phase transition, the curvature fluctuations exibit a singular behaviour which is reproduced in an abstract geometric model suggesting that the phase transition might correspond to a change in the topology of the manifold whose geodesics are the motions of the system.Comment: REVTeX, 10 pages, 5 PostScript figures, published versio

    Accurate and efficient constrained molecular dynamics of polymers using Newton's method and special purpose code

    Get PDF
    In molecular dynamics simulations we can often increase the time step by imposing constraints on bond lengths and bond angles. This allows us to extend the length of the time interval and therefore the range of physical phenomena that we can afford to simulate. We examine the existing algorithms and software for solving nonlinear constraint equations in parallel and we explain why it is necessary to advance the state-of-the-art. We present ILVES-PC, a new algorithm for imposing bond constraints on proteins accurately and efficiently. It solves the same system of differential algebraic equations as the celebrated SHAKE algorithm, but ILVES-PC solves the nonlinear constraint equations using Newton’s method rather than the nonlinear Gauss-Seidel method. Moreover, ILVES-PC solves the necessary linear systems using a specialized linear solver that exploits the structure of the protein. ILVES-PC can rapidly solve constraint equations as accurately as the hardware will allow. The run-time of ILVES-PC is proportional to the number of constraints. We have integrated ILVES-PC into GROMACS and simulated proteins of different sizes. Compared with SHAKE, we have achieved speedups of up to 4.9× in single-threaded executions and up to 76× in shared-memory multi-threaded executions. Moreover, ILVES-PC is more accurate than P-LINCS algorithm. Our work is a proof-of-concept of the utility of software designed specifically for the simulation of polymers

    Increased plasma levels of mitochondrial DNA and pro-inflammatory cytokines in patients with progressive multiple sclerosis

    Get PDF
    The role of damage-associated molecular patterns in multiple sclerosis (MS) is under investigation. Here, we studied the contribution of circulating high mobility group box protein 1 (HMGB1) and mitochondrial DNA (mtDNA) to neuroinflammation in progressive MS. We measured plasmatic mtDNA, HMGB1 and pro-inflammatory cytokines in 38 secondary progressive (SP) patients, 35 primary progressive (PP) patients and 42 controls. Free mtDNA was higher in SP than PP. Pro-inflammatory cytokines were increased in progressive patients. In PP, tumor necrosis factor-α correlated with MS Severity Score. Thus, in progressive patients, plasmatic mtDNA and pro-inflammatory cytokines likely contribute to the systemic inflammatory status

    The Fermi-Pasta-Ulam problem revisited: stochasticity thresholds in nonlinear Hamiltonian systems

    Full text link
    The Fermi-Pasta-Ulam α\alpha-model of harmonic oscillators with cubic anharmonic interactions is studied from a statistical mechanical point of view. Systems of N= 32 to 128 oscillators appear to be large enough to suggest statistical mechanical behavior. A key element has been a comparison of the maximum Lyapounov coefficient λmax\lambda_{max} of the FPU α\alpha-model and that of the Toda lattice. For generic initial conditions, λmax(t)\lambda_{max}(t) is indistinguishable for the two models up to times that increase with decreasing energy (at fixed N). Then suddenly a bifurcation appears, which can be discussed in relation to the breakup of regular, soliton-like structures. After this bifurcation, the λmax\lambda_{max} of the FPU model appears to approach a constant, while the λmax\lambda_{max} of the Toda lattice appears to approach zero, consistent with its integrability. This suggests that for generic initial conditions the FPU α\alpha-model is chaotic and will therefore approach equilibrium and equipartition of energy. There is, however, a threshold energy density ϵc(N)1/N2\epsilon_c(N)\sim 1/N^2, below which trapping occurs; here the dynamics appears to be regular, soliton-like and the approach to equilibrium - if any - takes longer than observable on any available computer. Above this threshold the system appears to behave in accordance with statistical mechanics, exhibiting an approach to equilibrium in physically reasonable times. The initial conditions chosen by Fermi, Pasta and Ulam were not generic and below threshold and would have required possibly an infinite time to reach equilibrium.Comment: 24 pages, REVTeX, 8 PostScript figures. Published versio

    Methods to study splicing from high-throughput RNA Sequencing data

    Full text link
    The development of novel high-throughput sequencing (HTS) methods for RNA (RNA-Seq) has provided a very powerful mean to study splicing under multiple conditions at unprecedented depth. However, the complexity of the information to be analyzed has turned this into a challenging task. In the last few years, a plethora of tools have been developed, allowing researchers to process RNA-Seq data to study the expression of isoforms and splicing events, and their relative changes under different conditions. We provide an overview of the methods available to study splicing from short RNA-Seq data. We group the methods according to the different questions they address: 1) Assignment of the sequencing reads to their likely gene of origin. This is addressed by methods that map reads to the genome and/or to the available gene annotations. 2) Recovering the sequence of splicing events and isoforms. This is addressed by transcript reconstruction and de novo assembly methods. 3) Quantification of events and isoforms. Either after reconstructing transcripts or using an annotation, many methods estimate the expression level or the relative usage of isoforms and/or events. 4) Providing an isoform or event view of differential splicing or expression. These include methods that compare relative event/isoform abundance or isoform expression across two or more conditions. 5) Visualizing splicing regulation. Various tools facilitate the visualization of the RNA-Seq data in the context of alternative splicing. In this review, we do not describe the specific mathematical models behind each method. Our aim is rather to provide an overview that could serve as an entry point for users who need to decide on a suitable tool for a specific analysis. We also attempt to propose a classification of the tools according to the operations they do, to facilitate the comparison and choice of methods.Comment: 31 pages, 1 figure, 9 tables. Small corrections adde
    corecore