6 research outputs found

    Carbon-Binding Designer Proteins that Discriminate between sp<sup>2</sup>- and sp<sup>3</sup>‑Hybridized Carbon Surfaces

    No full text
    Robust and simple strategies to directly functionalize graphene- and diamond-based nanostructures with proteins are of considerable interest for biologically-driven manufacturing, biosensing, and bioimaging. Here, we identify a new set of carbon-binding peptides that vary in overall hydrophobicity and charge and engineer two of these sequences (Car9 and Car15) within the framework of <i>E. coli</i> thioredoxin 1 (TrxA). We develop purification schemes to recover the resulting TrxA derivatives in a soluble form and conduct a detailed analysis of the mechanisms that underpin the interaction of the fusion proteins with carbonaceous surfaces. Although equilibrium quartz crystal microbalance measurements show that TrxA::Car9 and TrxA::Car15 have similar affinities for sp<sup>2</sup>-hybridized graphitic carbon (<i>K</i><sub>d</sub> = 50 and 90 nM, respectively), only the latter protein is capable of dispersing carbon nanotubes. Further investigation by surface plasmon resonance and atomic force microscopy reveals that TrxA::Car15 interacts with sp<sup>2</sup>-bonded carbon through a combination of hydrophobic and π–π interactions but that TrxA::Car9 exhibits a cooperative mode of binding that relies on a combination of electrostatics and weaker π stacking. Consequently, we find that TrxA::Car9 binds equally well to sp<sup>2</sup>- and sp<sup>3</sup>-bonded (diamondlike) carbon particles whereas TrxA::Car15 is capable of discriminating between the two carbon allotropes. Our results emphasize the importance of understanding both bulk and molecular recognition events when exploiting the adhesive properties of solid-binding peptides and proteins in technological applications

    Measuring Proton Currents of Bioinspired Materials with Metallic Contacts

    No full text
    Charge transfer at the interface between the active layer and the contact is essential in any device. Transfer of electronic charges across the contact/active layer interface with metal contacts is well-understood. To this end, noble metals, such as gold or platinum, are widely used. With these contacts, ionic currents (especially protonic) are often neglected because ions and protons do not transfer across the interface between the contact and the active layer. Palladium hydride contacts have emerged as good contacts to measure proton currents because of a reversible redox reaction at the interface and subsequent absorption/desorption of H into palladium, translating the proton flow reaching the interface into an electron flow at the outer circuit. Here, we demonstrate that gold and palladium contacts also collect proton currents, especially under high relative humidity conditions because of electrochemical reactions at the interface. A marked kinetic isotope effect, which is a signature of proton currents, is observed with gold and palladium contacts, indicating both bulk and contact processes involving proton transfer. These phenomena are attributed to electrochemical processes involving water splitting at the interface. In addition to promoting charge transfer at the interface, these interfacial electrochemical processes inject charge carriers into the active layer and hence can also modulate the bulk resistivity of the materials, as was found for the studied peptide fibril films. We conclude that proton currents may not be neglected a priori when performing electronic measurements on biological and bioinspired materials with gold and palladium contacts under high humidity conditions

    Delivery of Cargo with a Bioelectronic Trigger

    No full text
    Biological systems exchange information often with chemical signals. Here, we demonstrate the chemical delivery of a fluorescent label using a bioelectronic trigger. Acid-sensitive microparticles release fluorescin diacetate upon low pH induced by a bioelectronic device. Cardiac fibroblast cells (CFs) uptake fluorescin diacetate, which transforms into fluorescein and emits a fluorescent signal. This proof-of-concept bioelectronic triggered delivery may be used in the future for real-time programming and control of cells and cell systems

    DataSheet1_Deep learning classification for macrophage subtypes through cell migratory pattern analysis.pdf

    No full text
    Macrophages can exhibit pro-inflammatory or pro-reparatory functions, contingent upon their specific activation state. This dynamic behavior empowers macrophages to engage in immune reactions and contribute to tissue homeostasis. Understanding the intricate interplay between macrophage motility and activation status provides valuable insights into the complex mechanisms that govern their diverse functions. In a recent study, we developed a classification method based on morphology, which demonstrated that movement characteristics, including speed and displacement, can serve as distinguishing factors for macrophage subtypes. In this study, we develop a deep learning model to explore the potential of classifying macrophage subtypes based solely on raw trajectory patterns. The classification model relies on the time series of x-y coordinates, as well as the distance traveled and net displacement. We begin by investigating the migratory patterns of macrophages to gain a deeper understanding of their behavior. Although this analysis does not directly inform the deep learning model, it serves to highlight the intricate and distinct dynamics exhibited by different macrophage subtypes, which cannot be easily captured by a finite set of motility metrics. Our study uses cell trajectories to classify three macrophage subtypes: M0, M1, and M2. This advancement holds promising implications for the future, as it suggests the possibility of identifying macrophage subtypes without relying on shape analysis. Consequently, it could potentially eliminate the necessity for high-quality imaging techniques and provide more robust methods for analyzing inherently blurry images.</p

    Protonic and Electronic Transport in Hydrated Thin Films of the Pigment Eumelanin

    No full text
    The electrical properties of eumelanin, a ubiquitous natural pigment, have fascinated scientists since the late 1960s. For several decades, the hydration-dependent electrical properties of eumelanin have mainly been interpreted within the amorphous semiconductor model. Recent works undermined this paradigm. Here we study protonic and electronic charge carrier transport in hydrated eumelanin in thin film form. Thin films are ideal candidates for these studies since they are readily accessible to chemical and morphological characterization and potentially amenable to device applications. Current–voltage (<i>I</i>-<i>V</i>) measurements, transient current measurements with proton-transparent electrodes, and electrochemical impedance spectroscopy (EIS) measurements are reported and correlated with the results of the chemical characterization of the films, performed by X-ray photoelectron spectroscopy. We show that the electrical response of hydrated eumelanin films is dominated by ionic conduction (10<sup>–4</sup>–10<sup>–3</sup> S cm<sup>–1</sup>), largely attributable to protons, and electrochemical processes. To propose an explanation for the electrical response of hydrated eumelanin films as observed by EIS and <i>I</i>-<i>V</i>, we considered the interplay of proton migration, redox processes, and electronic transport. These new insights improve the current understanding of the charge carrier transport properties of eumelanin opening the possibility to assess the potential of eumelanin for organic bioelectronic applications, e.g. protonic devices and implantable electrodes, and to advance the knowledge on the functions of eumelanin in biological systems

    Proton Conduction in Tröger’s Base-Linked Poly(crown ether)s

    No full text
    Exactly 50 years ago, the ground-breaking discovery of dibenzo[18]­crown-6 (DB18C6) by Charles Pedersen led to the use of DB18C6 as a receptor in supramolecular chemistry and a host in host–guest chemistry. We have demonstrated proton conductivity in Tröger’s base-linked polymers through hydrogen-bonded networks formed from adsorbed water molecules on the oxygen atoms of DB18C6 under humid conditions. Tröger’s base-linked polymerspoly­(TBL-DB18C6)-<i>t</i> and poly­(TBL-DB18C6)-<i>c</i>synthesized by the in situ alkylation and cyclization of either <i>trans</i>- or <i>cis</i>-di­(aminobenzo) [18]­crown-6 at room temperature have been isolated as high-molecular-weight polymers. The macromolecular structures of the isomeric poly­(TBL-DB18C6)­s have been established by spectroscopic techniques and size-exclusion chromatography. The excellent solubility of these polymers in chloroform allows the formation of freestanding membranes, which are thermally stable and also show stability under aqueous conditions. The hydrophilic nature of the DB18C6 building blocks in the polymer facilitates retention of water as confirmed by water vapor adsorption isotherms, which show a 23 wt % water uptake. The adsorbed water is retained even after reducing the relative humidity to 25%. The proton conductivity of poly­(TBL-DB18C6)-<i>t</i>, which is found to be 1.4 × 10<sup>–4</sup> mS cm<sup>–1</sup> in a humid environment, arises from the hydrogen bonding and the associated proton-hopping mechanism, as supported by a modeling study. In addition to proton conductivity, the Tröger’s base-linked polymers reported here promise a wide range of applications where the sub-nanometer-sized cavities of the crown ethers and the robust film-forming ability are the governing factors in dictating their properties
    corecore