111 research outputs found

    Gradient Index Metamaterial Based on Slot Elements

    Full text link
    We present a gradient-index (GRIN) metamaterial based on an array of annular slots. The structure allows a large variation of the effective refractive index under normal-to-plane incidence and thus enables the construction of GRIN devices consisting of only a small number of functional layers. Using full-wave simulations, we demonstrate the annular slot concept by means of a 3-unit-cell thin GRIN lens for the terahertz (THz) range. In the presented realizations, we achieved an index contrast of Delta n = 1.5 resulting in a highly refractive lens suitable for focusing THz radiation to a spot size smaller than the wavelength.Comment: 4 pages, 5 figure

    In-Plane Focusing of Terahertz Surface Waves on a Gradient Index Metamaterial Film

    Full text link
    We designed and implemented a gradient index metasurface for the in-plane focusing of confined terahertz surface waves. We measured the spatial propagation of the surface waves by two-dimensional mapping of the complex electric field using a terahertz near-field spectroscope. The surface waves were focused to a diameter of 500 \micro m after a focal length of approx. 2 mm. In the focus, we measured a field amplitude enhancement of a factor of 3.Comment: 6 pages, 4 figure

    Metamaterial near-field sensor for deep-subwavelength thickness measurements and sensitive refractometry in the terahertz frequency range

    Full text link
    We present a metamaterial-based terahertz (THz) sensor for thickness measurements of subwavelength-thin materials and refractometry of liquids and liquid mixtures. The sensor operates in reflection geometry and exploits the frequency shift of a sharp Fano resonance minimum in the presence of dielectric materials. We obtained a minimum thickness resolution of 12.5 nm (1/16000 times the wavelength of the THz radiation) and a refractive index sensitivity of 0.43 THz per refractive index unit. We support the experimental results by an analytical model that describes the dependence of the resonance frequency on the sample material thickness and the refractive index.Comment: 10 pages, 5 figure

    Modification of spintronic terahertz emitter performance through defect engineering

    Full text link
    Spintronic ferromagnetic/non-magnetic heterostructures are novel sources for the generation of THz radiation based on spin-to-charge conversion in the layers. The key technological and scientific challenge of THz spintronic emitters is to increase their intensity and frequency bandwidth. Our work reveals the factors to engineer spintronic Terahertz generation by introducing the scattering lifetime and the interface transmission for spin polarized, non-equilibrium electrons. We clarify the influence of the electron-defect scattering lifetime on the spectral shape and the interface transmission on the THz amplitude, and how this is linked to structural defects of bilayer emitters. The results of our study define a roadmap of the properties of emitted as well as detected THz-pulse shapes and spectra that is essential for future applications of metallic spintronic THz emitters.Comment: 33 pages, 13 figure

    Design of Electromagnetic Cloaks and Concentrators Using Form-Invariant Coordinate Transformations of Maxwell's Equations

    Full text link
    The technique of applying form-invariant, spatial coordinate transformations of Maxwell's equations can facilitate the design of structures with unique electromagnetic or optical functionality. Here, we illustrate the transformation-optical approach in the designs of a square electromagnetic cloak and an omni-directional electromagnetic field concentrator. The transformation equations are described and the functionality of the devices is numerically confirmed by two-dimensional finite element simulations. The two devices presented demonstrate that the transformation optic approach leads to the specification of complex, anisotropic and inhomogeneous materials with well directed and distinct electromagnetic behavior.Comment: submitted to "Photonics and Nanostructures", Special Issue "PECS VII", Elsevie

    Highly Selective Terahertz Bandpass Filters Based on Trapped Mode Excitation

    Full text link
    We present two types of metamaterial-based spectral bandpass filters for the terahertz (THz) frequency range. The metamaterials are specifically designed to operate for waves at normal incidence and to be independent of the field polarization. The functional structures are embedded in films of benzocyclobutene (BCB) resulting in large-area, free-standing and flexible membranes with low intrinsic loss. The proposed filters are investigated by THz time-domain spectroscopy and show a pronounced transmission peak with over 80]% amplitude transmission in the passband and a transmission rejection down to the noise level in the stopbands. The measurements are supported by numerical simulations which evidence that the high transmission response is related to the excitation of trapped modes.Comment: 6 pages, 4 figure

    Ecto-ATPase CD39 Inactivates Isoprenoid-Derived Vγ9Vδ2 T Cell Phosphoantigens

    Get PDF
    Summary In humans, Vγ9Vδ2 T cells respond to self and pathogen-associated, diphosphate-containing isoprenoids, also known as phosphoantigens (pAgs). However, activation and homeostasis of Vγ9Vδ2 T cells remain incompletely understood. Here, we show that pAgs induced expression of the ecto-ATPase CD39, which, however, not only hydrolyzed ATP but also abrogated the γδ T cell receptor (TCR) agonistic activity of self and microbial pAgs (C5 to C15). Only mevalonate-derived geranylgeranyl diphosphate (GGPP, C20) resisted CD39-mediated hydrolysis and acted as a regulator of CD39 expression and activity. GGPP enhanced macrophage differentiation in response to the tissue stress cytokine interleukin-15. In addition, GGPP-imprinted macrophage-like cells displayed increased capacity to produce IL-1β as well as the chemokine CCL2 and preferentially activated CD161-expressing CD4+ T cells in an innate-like manner. Our studies reveal a previously unrecognized immunoregulatory function of CD39 and highlight a particular role of GGPP among pAgs
    corecore