5 research outputs found

    Effect of Functionalized Gold Nanoparticles on Floating Lipid Bilayers

    No full text
    The development of novel nano-engineered materials poses important questions regarding the impact of these new materials on living systems. Possible adverse effects must be assessed in order to prevent risks for health and the environment. On the other hand, a thorough understanding of their interaction with biological systems might also result in the creation of novel biomedical applications. We present a study on the interaction of model lipid membranes with gold nanoparticles (AuNP) of different surface modifications. Neutron reflectometry experiments on zwitterionic lipid double bilayers were performed in the presence of AuNP functionalized with cationic and anionic head groups. Structural information was obtained that provided insight into the fate of the AuNPs with regard to the integrity of the model cell membranes. The AuNPs functionalized with cationic head groups penetrate into the hydrophobic moiety of the lipid bilayers and cause membrane disruption at an increased concentration. In contrast, the AuNPs functionalized with anionic head groups do not enter but seem to impede the destruction of the lipid bilayer at an alkaline pH. The information obtained might influence the strategy for a better nanoparticle risk assessment based on a surface charge evaluation and contribute to nano-safety considerations during their design

    Small-Angle Neutron Scattering Reveals the Nanostructure of Liposomes with Embedded OprF Porins of Pseudomonas aeruginosa

    No full text
    The use of liposomes as drug delivery systems emerged in the last decades in view of their capacity and versatility to deliver a variety of therapeutic agents. By means of small-angle neutron scattering (SANS), we performed a detailed characterization of liposomes containing outer membrane protein F (OprF), the main porin of the Pseudomonas aeruginosa bacterium outer membrane. These OprF-liposomes are the basis of a novel vaccine against this antibiotic-resistant bacterium, which is one of the main hospital-acquired pathogens and causes each year a significant number of deaths. SANS data were analyzed by a specific model we created to quantify the crucial information about the structure of the liposome containing OprF, including the lipid bilayer structure, the amount of protein in the lipid bilayer, the average protein localization, and the effect of the protein incorporation on the lipid bilayer. Quantification of such structural information is important to enhance the design of liposomal delivery systems for therapeutic applications

    Submicrometer 3D Structural Evidence of Fuel Cell Membrane Heterogeneous Degradation

    No full text
    Polymer membranes used in the proton exchange membrane fuel cell (PEMFC) technology are subject to severe chemical and physical degradations during operation. A microscopic diagnosis of the effects of aging on the microstructure of benchmark perfluorinated sulfonic acid (PFSA) membranes is crucial to developing long-lasting devices. We report here the first μSAXS study of membranes aged for 2500 h in a stack. SAXS spectra recorded with submicrometer resolution in-plane and along the membrane thickness provide a 3D mapping of the aging effect. Nanoscale heterogeneities are evidenced and found to depend on the membrane position relative to the electrodes, to the air inlets, and proximity to channels (distributing gas) or ribs (collecting the current). Long-term aging in a fuel cell operating in stationary conditions around 65 °C results in a small voltage degradation rate of 13 μV/h, without any evidence of membrane failure, but to an irreversible over-swelling of the membrane due to polymer relaxation. Regions under the gas distribution channels close to the air inlet are profoundly degraded due to an increased water gradient concentration from the cathode to the anode. These observations provide a novel and unique insight for developing new strategies toward the design of more durable polymers inserted in smart fuel cells

    Functional Characterization of Cell-Free Expressed OprF Porin from <i>Pseudomonas aeruginosa</i> Stably Incorporated in Tethered Lipid Bilayers

    No full text
    OprF has a central role in <i>Pseudomonas aeruginosa</i> virulence and thus provides a putative target for either vaccines or antibiotic cofactors that could overcome the bacterium’s natural resistance to antibiotics. Here we describe a procedure to optimize the production of highly pure and functional OprF porins that are then incorporated into a tethered lipid bilayer. This is a stable biomimetic system that provides the capability to investigate structural aspects and function of OprF using and neutron reflectometry and electrical impedance spectroscopy. The recombinant OprF produced using the optimized cell-free procedure yielded a quantity of between 0.5 to 1.0 mg/mL with a purity ranging from 85 to 91% in the proteoliposomes. The recombinant OprF is capable of binding IFN-γ and is correctly folded in the proteoliposomes. Because OprF proteins form pores the biomimetic system allowed the measurement of OprF conductance using impedance spectroscopy. The neutron reflectometry measurements showed that the OprF protein is incorporated into the lipid bilayer but with parts of the protein in both the regions above and below the lipid bilayer. Those structural aspects are coherent with the current assumed structure of a transmembrane N-terminal domain composed by eight stranded beta-barrels and a globular C-terminal domain located in the periplasm. Currently there are no crystal structures available for OprF. The experimental model system that we describe provides a basis for further fundamental studies of OprF and particularly for the ongoing biotechnological development of OprF as a target for antibacterial drugs

    Damping Off Terahertz Sound Modes of a Liquid upon Immersion of Nanoparticles

    No full text
    The control of phonon propagation in nanoparticle arrays is one of the frontiers of nanotechnology, potentially enabling the discovery of materials with unknown functionalities for potential innovative applications. The exploration of the terahertz window appears quite promising as phonons in this range are the leading carriers of heat transport in insulators and their control is the key to implement devices for heat flow management. Unfortunately, this scientific field is still in its infancy, and even a basic topic such as the influence of floating nanoparticles on the terahertz phonon propagation of a colloidal suspension still eludes a firm answer. Shedding some light on this topic is the main motivation of the present work, which focuses an inelastic X-ray scattering (IXS) measurements on a dilute suspension of Au nanospheres in water. Measured spectra showed a nontrivial shape displaying multiple inelastic features that, based on a Bayesian inference analysis, we assign to phonon modes propagating throughout the nanoparticle interior. Surprisingly, the spectra bear no evidence of propagating modes, which are known to dominate the spectrum of pure water, owing to the scattering that these modes suffer from the sparse nanoparticles in suspension. In perspective, this finding may inspire simple routes to manipulate high-frequency acoustic propagation in hybridliquid and solidmaterials
    corecore