3,292 research outputs found
Recommended from our members
Understanding customer satisfaction with services by leveraging big data: the role of services attributes and consumers’ cultural background
User-generated content and online reviews are becoming an increasingly relevant source of
information for online customers that use them for purchasing decisions. This study examines the impact
of services attributes and consumers’ cultural background on customer satisfaction with services in an
online setting using big data. First, almost half a million Expedia.com hotel online reviews related to hotel
properties located in five different countries (United States, United Kingdom, Italy, Spain, Russia) were
retrieved. Second, the resulting dataset was used to investigate if and to what extent the overall customer
satisfaction with a service is affected by the evaluation of specific hotel services attributes (operationalized
based on an established typology of attributes) and by the consumers’ cultural background (operationalized
by means of Hoftstede’s framework). A comprehensive multivariate regression analysis is carried out to test
the literature-driven hypotheses formulated. In particular, the analysis reveals that critical service attributes
such as hotel condition, room comfort, service and staff, and cleanliness positively affect the overall online
satisfaction ratings. The cultural dimensions of power distance, individualism and uncertainty avoidance
negatively affect overall online satisfaction, while long-term orientation and indulgence positively affect
online satisfaction. Masculinity seem not to play a significant role. We also observe that reviews’ text length
exerts a negative impact on online ratings. Theoretical and practical implications are discussed
Custom Dual Transportation Mode Detection by Smartphone Devices Exploiting Sensor Diversity
Making applications aware of the mobility experienced by the user can open
the door to a wide range of novel services in different use-cases, from smart
parking to vehicular traffic monitoring. In the literature, there are many
different studies demonstrating the theoretical possibility of performing
Transportation Mode Detection (TMD) by mining smart-phones embedded sensors
data. However, very few of them provide details on the benchmarking process and
on how to implement the detection process in practice. In this study, we
provide guidelines and fundamental results that can be useful for both
researcher and practitioners aiming at implementing a working TMD system. These
guidelines consist of three main contributions. First, we detail the
construction of a training dataset, gathered by heterogeneous users and
including five different transportation modes; the dataset is made available to
the research community as reference benchmark. Second, we provide an in-depth
analysis of the sensor-relevance for the case of Dual TDM, which is required by
most of mobility-aware applications. Third, we investigate the possibility to
perform TMD of unknown users/instances not present in the training set and we
compare with state-of-the-art Android APIs for activity recognition.Comment: Pre-print of the accepted version for the 14th Workshop on Context
and Activity Modeling and Recognition (IEEE COMOREA 2018), Athens, Greece,
March 19-23, 201
Recommended from our members
The determinants of Facebook social engagement for National Tourism Organisations’ Facebook pages: a quantitative approach
This work explores how the National Tourism Organizations (NTOs) of the top 10 most visited countries by international tourists strategically employ Facebook to promote and market their destinations. Based on big data retrieved from the NTOs’ Facebook pages, and leveraging advanced metrics for capturing user engagement, the study sheds light on the factors contributing to superior level of social activity. The findings indicate that the way Facebook is tactically employed varies significantly across sampled NTOs. The panel data regression analyses suggest that engagement is positively affected by posting visual content (namely photos), and posting during the weekends, and negatively affected by evening posting. Post frequency displays no statistically significant effect on social engagement. The study also shows that most of the NTOs (except for Italy, Spain, Turkey and the UK) deploy Facebook with a top-down approach, and spontaneous user generated content (UGC) is allowed to a very little extent
Survival nomograms after curative neoadjuvant chemotherapy and radical surgery for stage IB2-IIIB cervical cancer
PURPOSE: The purpose of this study was to develop nomograms for predicting the probability of overall survival (OS) and progression-free survival (PFS) in locally advanced cervical cancer treated with neoadjuvant chemotherapy and radical surgery.
MATERIALS AND METHODS: Nomograms to predict the 5-year OS rates and the 2-year PFS rates were constructed. Calibration plots were constructed, and concordance indices were calculated. Evaluated variableswere body mass index, age, tumor size, tumor histology, grading, lymphovascular space invasion, positive parametria, and positive lymph nodes.
RESULTS: In total 245 patients with locally advanced cervical cancer who underwent neoadjuvant chemotherapy and radical surgery were included for the construction of the nomogram. The 5-year OS and PFS were 72.6% and 66%, respectively. Tumor size, grading, and parametria status affected the rate of OS, whereas tumor size and positive parametria were the main independent PFS prognostic factors.
CONCLUSION: We constructed a nomogram based on clinicopathological features in order to predict 2-year PFS and 5-year OS in locally advanced cervical cancer primarily treated with neoadjuvant chemotherapy followed by radical surgery. This tool might be particularly helpful for assisting in the follow-up of cervical cancer patients who have not undergone concurrent chemoradiotherapy
Mechanisms of endothelial cell dysfunction in cystic fibrosis
Although cystic fibrosis (CF) patients exhibit signs of endothelial perturbation, the functions of the cystic fibrosis
conductance regulator (CFTR) in vascular endothelial cells (EC) are poorly defined. We sought to uncover
biological activities of endothelial CFTR, relevant for vascular homeostasis and inflammation. We examined cells
from human umbilical cords (HUVEC) and pulmonary artery isolated from non-cystic fibrosis (PAEC) and CF
human lungs (CF-PAEC), under static conditions or physiological shear. CFTR activity, clearly detected in
HUVEC and PAEC, was markedly reduced in CF-PAEC. CFTR blockade increased endothelial permeability to
macromolecules and reduced trans‑endothelial electrical resistance (TEER). Consistent with this, CF-PAEC displayed
lower TEER compared to PAEC. Under shear, CFTR blockade reduced VE-cadherin and p120 catenin
membrane expression and triggered the formation of paxillin- and vinculin-enriched membrane blebs that
evolved in shrinking of the cell body and disruption of cell-cell contacts. These changes were accompanied by
enhanced release of microvesicles, which displayed reduced capability to stimulate proliferation in recipient EC.
CFTR blockade also suppressed insulin-induced NO generation by EC, likely by inhibiting eNOS and AKT
phosphorylation, whereas it enhanced IL-8 release. Remarkably, phosphodiesterase inhibitors in combination
with a β2 adrenergic receptor agonist corrected functional and morphological changes triggered by CFTR dysfunction
in EC. Our results uncover regulatory functions of CFTR in EC, suggesting a physiological role of CFTR
in the maintenance EC homeostasis and its involvement in pathogenetic aspects of CF. Moreover, our findings
open avenues for novel pharmacology to control endothelial dysfunction and its consequences in CF
Silk fibroin scaffolds enhance cell commitment of adult rat cardiac progenitor cells.
The use of three-dimensional (3D) cultures may induce cardiac progenitor cells to synthesize their
own extracellular matrix (ECM) and sarcomeric proteins to initiate cardiac differentiation. 3D
cultures grown on synthetic scaffolds may favour the implantation and survival of stem cells for cell
therapy when pharmacological therapies are not efficient in curing cardiovascular diseases and when
organ transplantation remains the only treatment able to rescue the patient’s life. Silk fibroin-based
scaffolds may be used to increase cell affinity to biomaterials and may be chemically modified to
improve cell adhesion. In the present study, porous, partially orientated and electrospun nanometric
nets were used. Cardiac progenitor cells isolated from adult rats were seeded by capillarity in the 3D
structures and cultured inside inserts for 21 days. Under this condition, the cells expressed a high
level of sarcomeric and cardiac proteins and synthesized a great quantity of ECM. In particular,
partially orientated scaffolds induced the synthesis of titin, which is a fundamental protein in
sarcomere assembly
Context-Aware Android Applications through Transportation Mode Detection Techniques
In this paper, we study the problem of how to detect the current transportation mode of the user from the smartphone sensors data, because this issue is considered crucial for the deployment of a multitude of mobility-aware systems, ranging from trace collectors to health monitoring and urban sensing systems. Although some feasibility studies have been performed in the literature, most of the proposed systems rely on the utilization of the GPS and on computational expensive algorithms that do not take into account the limited resources of mobile phones. On the opposite, this paper focuses on the design and implementation of a feasible and efficient detection system that takes into account both the issues of accuracy of classification and of energy consumption. To this purpose, we propose the utilization of embedded sensor data (accelerometer/gyroscope) with a novel meta-classifier based on a cascading technique, and we show that our combined approach can provide similar performance than a GPS-based classifier, but introducing also the possibility to control the computational load based on requested confidence. We describe the implementation of the proposed system into an Android framework that can be leveraged by third-part mobile applications to access context-aware information in a transparent way
The role of melatonin in mood disorders
Melatonin (N-acetyl-5-methoxytryptamine) has been discovered as a hormone secreted by the pineal gland, even though it is also synthetized in various other organs, tissues, and cells. The circadian rhythm of melatonin is often used as an indicator phase position since it is a well-defined, high-amplitude rhythm controlled by the hypothalamic suprachiasmatic nuclei. Melatonin production is controlled by this endogenous circadian timing system. It peaks during the night and is suppressed by daylight. Mood spectrum disorders, including bipolar disorder (BD), major depressive disorder (MDD), and seasonal affective disorder (SAD), have been observed to be accompanied by circadian dysregulation as well as dysregulation in melatonin secretion. Simultaneously, it has also been documented that disruptions in circadian rhythms, including the sleep/wake cycle, though environmental means can produce mood-related problems in vulnerable individuals. These findings suggested that altered circadian rhythms might be biological markers of these disorders. As melatonin is considered a chronobiotic factor, ie, able to entrain the circadian rhythms of several biological functions (eg, activity/rest, sleep/wake, body temperature, endocrine rhythms, etc), its use may provide a new therapeutic approach for the treatment of affective disorders. However, the available evidence is controversial. This review summarizes the data published so far about reliable evidence on the role of melatonin in affective disorder
Cross-layer optimizations in multi-hop ad hoc networks
Unlike traditional wireless networks, characterized by the presence of last-mile, static and
reliable infrastructures, Mobile ad Hoc Networks (MANETs) are dynamically formed by
collections of mobile and static terminals that exchange data by enabling each other's
communication. Supporting multi-hop communication in a MANET is a challenging
research area because it requires cooperation between different protocol layers (MAC,
routing, transport). In particular, MAC and routing protocols could be considered
mutually cooperative protocol layers. When a route is established, the exposed and
hidden terminal problems at MAC layer may decrease the end-to-end performance
proportionally with the length of each route. Conversely, the contention at MAC layer
may cause a routing protocol to respond by initiating new routes queries and routing table
updates.
Multi-hop communication may also benefit the presence of pseudo-centralized virtual
infrastructures obtained by grouping nodes into clusters. Clustering structures may
facilitate the spatial reuse of resources by increasing the system capacity: at the same
time, the clustering hierarchy may be used to coordinate transmissions events inside the
network and to support intra-cluster routing schemes. Again, MAC and clustering
protocols could be considered mutually cooperative protocol layers: the clustering
scheme could support MAC layer coordination among nodes, by shifting the distributed
MAC paradigm towards a pseudo-centralized MAC paradigm. On the other hand, the
system benefits of the clustering scheme could be emphasized by the pseudo-centralized
MAC layer with the support for differentiated access priorities and controlled contention.
In this thesis, we propose cross-layer solutions involving joint design of MAC, clustering
and routing protocols in MANETs.
As main contribution, we study and analyze the integration of MAC and clustering
schemes to support multi-hop communication in large-scale ad hoc networks. A novel
clustering protocol, named Availability Clustering (AC), is defined under general nodes'
heterogeneity assumptions in terms of connectivity, available energy and relative
mobility. On this basis, we design and analyze a distributed and adaptive MAC protocol,
named Differentiated Distributed Coordination Function (DDCF), whose focus is to
implement adaptive access differentiation based on the node roles, which have been
assigned by the upper-layer's clustering scheme. We extensively simulate the proposed
clustering scheme by showing its effectiveness in dominating the network dynamics,
under some stressing mobility models and different mobility rates. Based on these results,
we propose a possible application of the cross-layer MAC+Clustering scheme to support
the fast propagation of alert messages in a vehicular environment.
At the same time, we investigate the integration of MAC and routing protocols in large
scale multi-hop ad-hoc networks. A novel multipath routing scheme is proposed, by
extending the AOMDV protocol with a novel load-balancing approach to concurrently
distribute the traffic among the multiple paths. We also study the composition effect of a
IEEE 802.11-based enhanced MAC forwarding mechanism called Fast Forward (FF),
used to reduce the effects of self-contention among frames at the MAC layer. The
protocol framework is modelled and extensively simulated for a large set of metrics and
scenarios.
For both the schemes, the simulation results reveal the benefits of the cross-layer
MAC+routing and MAC+clustering approaches over single-layer solutions
- …
