3,731 research outputs found

    Synthesis of pyrrole derivatives of serinol for functionalization of carbon allotropes

    Get PDF
    N-Pyrrole-based heterocycles are present in many natural products,[1] medicinal agents,[2] and functional materials,[3,4] therefore substantial attention has been paid to develop efficient methods for pyrroles synthesis. Moreover, they are precursors for the synthesis of poly N-alkyl pyrroles which have wide ranging applications in electronics and sensors due to their tunable optoelectronic properties. We present here one operationally simple, practical and economical Paal-Knorr pyrrole condensation of serinol (2-amino-propan-1,3-diol, 1) with beta-dicarbonyl compounds 2 (and related acetal/ketals or enolesters), under neat conditions in the absence of any catalysts, which allows the synthesis of N-serinopyrrole derivatives (3) in good to excellent yield. Depending on substituents, compounds 3 show quite interesting amphiphilic polar/unpolar and variable -interaction properties. The mechanistic conclusion reached in the study, allowed to identify a direct method for the preparation of the precursor serinol-pyrrole from sugar derivatives. Typical examples of this reaction is the dehydrative condensation of galactaric acid (4) with serinol (1) (i.e. its serinol salt or other derivatives). Methods for the derivatization of carbon allotropes (CNT, Graphenes and Carbon Black) by the prepared pyrroles were investigated and the good dispersion properties of the resulting material proved

    Lobster eye optics for nano-satellite x-ray monitor

    Get PDF
    The Lobster eye design for a grazing incidence X-ray optics provides wide field of view of the order of many degrees, for this reason it would be a convenient approach for the construction of space X-ray monitors. In this paper, we compare previously reported measurements of prototype lobster eye X-ray optics called P-25 with computer simulations and discuss differences between the theoretical end experimentally obtained results. Usability of this prototype lobster eye and manufacturing technology for the nano-satellite mission is assessed. The specific scientific goals are proposed

    From cellular networks to mobile cloud computing: security and efficiency of smartphone systems.

    Get PDF
    In my first year of my Computer Science degree, if somebody had told me that the few years ahead of me could have been the last ones of the so-called PC-era, I would have hardly believed him. Sure, I could imagine computers becoming smaller, faster and cheaper, but I could have never imagined that in such a short time the focus of the market would have so dramatically shifted from PCs to personal devices. Today, smartphones and tablets have become our inseparable companions, changing for the better numerous aspects of our daily life. The way we plan our days, we communicate with people, we listen to music, we search for information, we take pictures, we spend our free time and the way we note our ideas has been totally revolutionized thanks to them. At the same time, thanks also to the rapid growth of the Cloud Computing based services, most of our data and of the Internet services that we use every day are just a login-distance away from any device connected to the Internet that we can find around us. We can edit our documents, look our and our friends’ pictures and videos, share our thoughts, access our bank account, pay our taxes using a familiar interface independently from where we are. What is the most fascinating thing is that all these new possibilities are not anymore at the hand of technically-savvy geeks only, but they are available to newer and older generations alike thanks to the efforts that recently have been put into building user interfaces that feel more natural and intuitive even to totally unexperienced users. Despite of that, we are still far from an ideal world. Service providers, software engineers, hardware manufacturers and security experts are having a hard time in trying to satisfy the always growing expectations of a number of users that is steadily increasing every day. People are always longing for faster mobile connectivity at lower prices, for longer lasting batteries and for more powerful devices. On top of that, users are more and more exposed to new security threats, either because they tend to ignore even the most basic security-practices, or because virus writers have found new ways to exploit the now world-sized market of mobile devices. For instance, more people accessing the Internet from their mobile devices forces the existing network infrastructure to be continuously updated in order to cope with the constantly increase in data consumption. As a consequence, AT&T’s subscribers in the United States were getting extremely slow or no service at all because of the mobile network straining to meet iPhone users’ demand [5]. The company switched from unlimited traffic plans to tiered pricing for mobile data users in summer 2010. Similarly, Dutch T-Mobile’s infrastructure has not been able to cope with intense data traffic, thus forcing the company to issue refunds for affected users [6]. Another important aspect is that of mobile security. Around a billion of people today have their personal information on Facebook and half of them access Facebook from their mobile phone [7]; the size of the online-banking in America has almost doubled since 2004, with 16% of the American mobile users conducting financial-related activities from their mobile device [8]; on 2010, customers spent one billion of dollars buying products on Amazon via mobile devices [9]. These numbers give an idea of the amount of people that today could find themselves in trouble by not giving enough care into protecting their mobile device from unauthorized access. A distracted user who loses his phone, or just forgets it in a public place, even if for a short time only, could allow someone else to get unrestrained access to his online identity. By copying the contents of the phone, including passwords and access keys, an attacker could steal money from the user’s bank account, read the user’s emails, steal the user’s personal files stored on the cloud, use the user’s personal information to conduct scams, frauds, and other crimes using his name and so on. But identity theft is not the only security problem affecting mobile users. Between 2011 and 2012, the number of unique viruses and malwares targeting mobile devices has increased more than six times, according to a recent report [10]. Typically, these try to get installed in the target device by convincing the user to download an infected app, or by making them follow a link to a malicious web site. The problems just exposed are major issues affecting user’s experience nowadays. We believe that finding effective, yet simple and widely adoptable solutions may require a new point of view, a shift in the way these problems are tackled. For these reasons, we evaluated the possibility of using a hybrid approach, that is, one where different technologies are brought together to create new, previously unexplored solutions. We started by considering the issues affecting the mobile network infrastructure. While it is true that the usage of mobile connectivity has significantly increased over the past few years, it is also true that socially close users tend to be interested in the same content, like, the same Youtube videos, the same application updates, the same news and so on. By knowing that, operators, instead of spending billions [11] to update their mobile network, could try an orthogonal approach and leverage an ad-hoc wireless network between the mobile devices, referred to in literature as Pocket Switched Networks [12]. Indeed, most of the smartphones on the market today are equipped with short-ranged radio interfaces (i.e., Bluetooth, WiFi) that allow them to exchange data whenever they are close enough to each other. Popular data could be then stored and transferred directly between devices in the same social context in an ad-hoc fashion instead of being downloaded multiple times from the mobile network. We therefore studied the possibility of channeling traffic to a few, socially important users in the network called VIP delegates, that can help distributing contents to the rest of the network. We evaluated VIP selection strategies that are based on the properties of the social network between mobile devices users. In Chapter 2, through extensive evaluations with real and synthetic traces, we show the effectiveness of VIP delegation both in terms of coverage and required number of VIPs – down to 7% in average of VIPs are needed in campus-like scenarios to offload about 90% of the traffic. These results have also been presented in [1]. Next we moved to the security issues. On of the highest threats to the security of mobile users is that of an identity theft performed using the data stored on the device. The problem highlighted by this kind of attacks is that the most commonly used authentication mechanisms completely fail to distinguish the honest user from somebody who just happens to know the user’s login credentials or private keys. To be resistant to identity theft attacks, an authentication mechanism should, instead, be built to leverage some intrinsic and difficult to replicate characteristic of each user. We proposed the Personal Marks and Community Certificates systems with this aim in mind. They constitute an authentication mechanism that uses the social context sensed by the smartphone by means of Bluetooth or WiFi radios as a biometric way to identify the owner of a device. Personal Marks is a simple cryptographic protocol that works well when the attacker tries to use the stolen credentials in the social community of the victim. Community Certificates works well when the adversary has the goal of using the stolen credentials when interacting with entities that are far from the social network of the victim. When combined, these mechanisms provide an excellent protection against identity theft attacks. In Chapter 3 we prove our ideas and solutions with extensive simulations in both simulated and real world scenarios—with mobility traces collected in a real life experiment. This study appeared in [2]. Another way of accessing the private data of a user, other than getting physical access to his device, could be by means of a malware. An emerging trend in the way people are fooled into installing malware-infected apps is that of exploiting existing trust relationships between socially close users, like those between Facebook friends. In this way, the malware can rapidly expand through social links from a small set of infected devices towards the rest of the network. In our quest for hybrid solutions to the problem of malware spreading in social networks of mobile users we developed a novel approach based on the Mobile Cloud Computing paradigm. In this new paradigm, a mobile device can alleviate the burden of computationally intensive tasks by offloading them to a software clone running on the cloud. Also, the clones associated to devices of users in the same community are connected in a social peer-to-peer network, thus allowing lightweight content sharing between friends. CloudShield is a suite of protocols that provides an efficient way stop the malware spread by sending a small set of patches from the clones to the infected devices. Our experiments on different datasets show that CloudShield is able to better and more efficiently contain malware spreading in mobile wireless networks than the state-of-the-art solutions presented in literature. These findings (which are not included in this dissertation) appeared in [3] and are the result of a joint work with P.h.D student S. Kosta from Sapienza University. My main contribution to this work was in the simulation of both the malware spreading and of the patching protocol schemes on the different social networks datasets. The Mobile Cloud Computing paradigm seems to be an excellent resource for mobile systems. It alleviates battery consumption on smartphones, it helps backing up user’s data on-the-fly and, as CloudShield proves, it can also be used to find new, effective, solutions to existing problems. However, the communication between the mobile devices and their clones needed by such paradigm certainly does not come for free. It costs both in terms of bandwidth (the traffic overhead to communicate with the cloud) and in terms of energy (computation and use of network interfaces on the device). Being aware of the issues that heavy computation or communication can cause to both the battery life of the devices [13], and to the mobile infrastructure, we decided to study the actual feasibility of both mobile computation offloading and mobile software/data backups in real-life scenarios. In our study we considered two types of clones: The off-clone, whose purpose is to support computation offloading, and the back-clone, which comes to use when a restore of user’s data and apps is needed. In Chapter 5 we give a precise evaluation of the feasibility and costs of both off-clones and back-clones in terms of bandwidth and energy consumption on the real device. We achieved this by means measurements done on a real testbed of 11 Android smartphones and on their relative clones running on the Amazon EC2 public cloud. The smartphones have been used as the primary mobile by the participants for the whole experiment duration. This study has been presented in [4] and is the result of a collaboration with P.h.D. Student S. Kosta from Sapienza University. S. Kosta mainly contributed to the experimental setup, deployment of the testbed and data collection

    Status of the EPIC thin and medium filters on-board XMM-Newton after more than 10 years of operation II: analysis of in-flight data

    Get PDF
    After more than ten years of operation of the EPIC camera on board the X-ray observatory XMM-Newton we have reviewed the status of its thin and medium filters by performing both analysis of data collected in-flight and laboratory measurements on on-ground back-up filters. We have investigated the status of the EPIC thin and medium filters by performing an analysis of the optical loading in the PN offset maps to gauge variations in the optical and UV transmission of the filters. We both investigated repeated observations of single optically bright targets and performed a statistical analysis of the extent of loading versus visual magnitude at different epochs. We report the results of these measurements

    From cellular networks to mobile cloud computing: security and efficiency of smartphone systems.

    Get PDF
    In my first year of my Computer Science degree, if somebody had told me that the few years ahead of me could have been the last ones of the so-called PC-era, I would have hardly believed him. Sure, I could imagine computers becoming smaller, faster and cheaper, but I could have never imagined that in such a short time the focus of the market would have so dramatically shifted from PCs to personal devices. Today, smartphones and tablets have become our inseparable companions, changing for the better numerous aspects of our daily life. The way we plan our days, we communicate with people, we listen to music, we search for information, we take pictures, we spend our free time and the way we note our ideas has been totally revolutionized thanks to them. At the same time, thanks also to the rapid growth of the Cloud Computing based services, most of our data and of the Internet services that we use every day are just a login-distance away from any device connected to the Internet that we can find around us. We can edit our documents, look our and our friends’ pictures and videos, share our thoughts, access our bank account, pay our taxes using a familiar interface independently from where we are. What is the most fascinating thing is that all these new possibilities are not anymore at the hand of technically-savvy geeks only, but they are available to newer and older generations alike thanks to the efforts that recently have been put into building user interfaces that feel more natural and intuitive even to totally unexperienced users. Despite of that, we are still far from an ideal world. Service providers, software engineers, hardware manufacturers and security experts are having a hard time in trying to satisfy the always growing expectations of a number of users that is steadily increasing every day. People are always longing for faster mobile connectivity at lower prices, for longer lasting batteries and for more powerful devices. On top of that, users are more and more exposed to new security threats, either because they tend to ignore even the most basic security-practices, or because virus writers have found new ways to exploit the now world-sized market of mobile devices. For instance, more people accessing the Internet from their mobile devices forces the existing network infrastructure to be continuously updated in order to cope with the constantly increase in data consumption. As a consequence, AT&T’s subscribers in the United States were getting extremely slow or no service at all because of the mobile network straining to meet iPhone users’ demand [5]. The company switched from unlimited traffic plans to tiered pricing for mobile data users in summer 2010. Similarly, Dutch T-Mobile’s infrastructure has not been able to cope with intense data traffic, thus forcing the company to issue refunds for affected users [6]. Another important aspect is that of mobile security. Around a billion of people today have their personal information on Facebook and half of them access Facebook from their mobile phone [7]; the size of the online-banking in America has almost doubled since 2004, with 16% of the American mobile users conducting financial-related activities from their mobile device [8]; on 2010, customers spent one billion of dollars buying products on Amazon via mobile devices [9]. These numbers give an idea of the amount of people that today could find themselves in trouble by not giving enough care into protecting their mobile device from unauthorized access. A distracted user who loses his phone, or just forgets it in a public place, even if for a short time only, could allow someone else to get unrestrained access to his online identity. By copying the contents of the phone, including passwords and access keys, an attacker could steal money from the user’s bank account, read the user’s emails, steal the user’s personal files stored on the cloud, use the user’s personal information to conduct scams, frauds, and other crimes using his name and so on. But identity theft is not the only security problem affecting mobile users. Between 2011 and 2012, the number of unique viruses and malwares targeting mobile devices has increased more than six times, according to a recent report [10]. Typically, these try to get installed in the target device by convincing the user to download an infected app, or by making them follow a link to a malicious web site. The problems just exposed are major issues affecting user’s experience nowadays. We believe that finding effective, yet simple and widely adoptable solutions may require a new point of view, a shift in the way these problems are tackled. For these reasons, we evaluated the possibility of using a hybrid approach, that is, one where different technologies are brought together to create new, previously unexplored solutions. We started by considering the issues affecting the mobile network infrastructure. While it is true that the usage of mobile connectivity has significantly increased over the past few years, it is also true that socially close users tend to be interested in the same content, like, the same Youtube videos, the same application updates, the same news and so on. By knowing that, operators, instead of spending billions [11] to update their mobile network, could try an orthogonal approach and leverage an ad-hoc wireless network between the mobile devices, referred to in literature as Pocket Switched Networks [12]. Indeed, most of the smartphones on the market today are equipped with short-ranged radio interfaces (i.e., Bluetooth, WiFi) that allow them to exchange data whenever they are close enough to each other. Popular data could be then stored and transferred directly between devices in the same social context in an ad-hoc fashion instead of being downloaded multiple times from the mobile network. We therefore studied the possibility of channeling traffic to a few, socially important users in the network called VIP delegates, that can help distributing contents to the rest of the network. We evaluated VIP selection strategies that are based on the properties of the social network between mobile devices users. In Chapter 2, through extensive evaluations with real and synthetic traces, we show the effectiveness of VIP delegation both in terms of coverage and required number of VIPs – down to 7% in average of VIPs are needed in campus-like scenarios to offload about 90% of the traffic. These results have also been presented in [1]. Next we moved to the security issues. On of the highest threats to the security of mobile users is that of an identity theft performed using the data stored on the device. The problem highlighted by this kind of attacks is that the most commonly used authentication mechanisms completely fail to distinguish the honest user from somebody who just happens to know the user’s login credentials or private keys. To be resistant to identity theft attacks, an authentication mechanism should, instead, be built to leverage some intrinsic and difficult to replicate characteristic of each user. We proposed the Personal Marks and Community Certificates systems with this aim in mind. They constitute an authentication mechanism that uses the social context sensed by the smartphone by means of Bluetooth or WiFi radios as a biometric way to identify the owner of a device. Personal Marks is a simple cryptographic protocol that works well when the attacker tries to use the stolen credentials in the social community of the victim. Community Certificates works well when the adversary has the goal of using the stolen credentials when interacting with entities that are far from the social network of the victim. When combined, these mechanisms provide an excellent protection against identity theft attacks. In Chapter 3 we prove our ideas and solutions with extensive simulations in both simulated and real world scenarios—with mobility traces collected in a real life experiment. This study appeared in [2]. Another way of accessing the private data of a user, other than getting physical access to his device, could be by means of a malware. An emerging trend in the way people are fooled into installing malware-infected apps is that of exploiting existing trust relationships between socially close users, like those between Facebook friends. In this way, the malware can rapidly expand through social links from a small set of infected devices towards the rest of the network. In our quest for hybrid solutions to the problem of malware spreading in social networks of mobile users we developed a novel approach based on the Mobile Cloud Computing paradigm. In this new paradigm, a mobile device can alleviate the burden of computationally intensive tasks by offloading them to a software clone running on the cloud. Also, the clones associated to devices of users in the same community are connected in a social peer-to-peer network, thus allowing lightweight content sharing between friends. CloudShield is a suite of protocols that provides an efficient way stop the malware spread by sending a small set of patches from the clones to the infected devices. Our experiments on different datasets show that CloudShield is able to better and more efficiently contain malware spreading in mobile wireless networks than the state-of-the-art solutions presented in literature. These findings (which are not included in this dissertation) appeared in [3] and are the result of a joint work with P.h.D student S. Kosta from Sapienza University. My main contribution to this work was in the simulation of both the malware spreading and of the patching protocol schemes on the different social networks datasets. The Mobile Cloud Computing paradigm seems to be an excellent resource for mobile systems. It alleviates battery consumption on smartphones, it helps backing up user’s data on-the-fly and, as CloudShield proves, it can also be used to find new, effective, solutions to existing problems. However, the communication between the mobile devices and their clones needed by such paradigm certainly does not come for free. It costs both in terms of bandwidth (the traffic overhead to communicate with the cloud) and in terms of energy (computation and use of network interfaces on the device). Being aware of the issues that heavy computation or communication can cause to both the battery life of the devices [13], and to the mobile infrastructure, we decided to study the actual feasibility of both mobile computation offloading and mobile software/data backups in real-life scenarios. In our study we considered two types of clones: The off-clone, whose purpose is to support computation offloading, and the back-clone, which comes to use when a restore of user’s data and apps is needed. In Chapter 5 we give a precise evaluation of the feasibility and costs of both off-clones and back-clones in terms of bandwidth and energy consumption on the real device. We achieved this by means measurements done on a real testbed of 11 Android smartphones and on their relative clones running on the Amazon EC2 public cloud. The smartphones have been used as the primary mobile by the participants for the whole experiment duration. This study has been presented in [4] and is the result of a collaboration with P.h.D. Student S. Kosta from Sapienza University. S. Kosta mainly contributed to the experimental setup, deployment of the testbed and data collection

    The mirror module design for the cryogenic x-ray imaging spectrometer on-board ORIGIN

    Get PDF
    ORIGIN is a medium size high-energy mission concept submitted to ESA in response to the Cosmic Vision call issued on July 2010. The mission will investigate the evolution of the Universe by performing soft X-ray high resolution spectroscopic measurements of metals formed in different astrophysical environments, from the first population III stars at z > 7 to the present large scale structures. The main instrument on-board ORIGIN will be a large format array of TES X-ray micro-calorimeters covering a FOV of 30' at the focal plane of a grazing incidence optical module with a focal length of 2.5 m and an angular resolution of 30'' HEW at 1 keV. We present the optical module design which is based on hybrid technologies, namely Silicon Pore Optics for the outer section and Ni electro-forming for the inner section, and we present the expected performances based on test measurements and ray-tracing simulations

    Direct sunlight facility for testing and research in HCPV

    Get PDF
    A facility for testing different components for HCPV application has been developed in the framework of “Fotovoltaico ad Alta Efficienza” (FAE) project funded by the Sicilian Regional Authority (PO FESR Sicilia 2007/2013 4.1.1.1). The testing facility is equipped with an heliostat providing a wide solar beam inside the lab, an optical bench for mounting and aligning the HCPV components, electronic equipments to characterize the I-V curves of multijunction cells operated up to 2000 suns, a system to circulate a fluid in the heat sink at controlled temperature and flow-rate, a data logging system with sensors to measure temperatures in several locations and fluid pressures at the inlet and outlet of the heat sink, and a climatic chamber with large test volume to test assembled HCPV modules

    INFN Open Access Repository – How to publish software repositories

    Get PDF
    The document is a quick guide on how to publish software repositories on the INFN Open Access Repository

    Planning the Surgical Correction of Spinal Deformities: Toward the Identification of the Biomechanical Principles by Means of Numerical Simulation

    Get PDF
    The set of surgical devices and techniques to perform spine deformity correction has widened dramatically. Nevertheless, the rate of complications due to mechanical failure remains rather high. Indeed, basic research about the principles of deformity correction and the optimal surgical strategies (i.e. the choice of the fusion length, the most appropriate instrumentation, the degree of tolerable correction) did not progress as much as the techniques. In this work, a software approach for the biomechanical simulation of the correction of patient-specific spinal deformities aimed to the identification of its biomechanical principles is presented. The method is based on three dimensional reconstructions of the spinal anatomy obtained from biplanar radiographic images. A user-friendly graphical interface allows for the planning of the deformity correction and to simulate the instrumentation. Robust meshing of the instrumented spine is provided by using consolidated computational geometry and meshing libraries. Based on finite element simulation, the program predicts the loads acting in the instrumentation as well as in the biological tissues. A simple test case (reduction of a low grade spondylolisthesis at L3-L4) was simulated as a proof-of-concept. Despite the limitations of this approach, the preliminary outcome is promising and encourages a wide effort towards its refinement
    corecore