188 research outputs found

    An upper bound for the Lipschitz retraction constant in l 1

    Full text link

    Non-invasive monitoring and control in silicon photonics by CMOS integrated electronics

    Get PDF
    As photonics breaks away from today's device level toward large scale of integration and complex systems-on-a-chip, concepts like monitoring, control and stabilization of photonic integrated circuits emerge as new paradigms. Here, we show non-invasive monitoring and feedback control of high quality factor silicon photonics resonators assisted by a transparent light detector directly integrated inside the cavity. Control operations are entirely managed by a CMOS microelectronic circuit, hosting many parallel electronic read-out channels, that is bridged to the silicon photonics chip. Advanced functionalities, such as wavelength tuning, locking, labeling and swapping are demonstrated. The non-invasive nature of the transparent monitor and the scalability of the CMOS read-out system offer a viable solution for the control of arbitrarily reconfigurable photonic integrated circuits aggregating many components on a single chip

    Automated routing and control of silicon photonic switch fabrics

    Get PDF
    Automatic reconfiguration and feedback controlled routing is demonstrated in an 8×8 silicon photonic switch fabric based on Mach-Zehnder interferometers. The use of non-invasive Contactless Integrated Photonic Probes (CLIPPs) enables real-time monitoring of the state of each switching element individually. Local monitoring provides direct information on the routing path, allowing an easy sequential tuning and feedback controlled stabilization of the individual switching elements, thus making the switch fabric robust against thermal crosstalk, even in the absence of a cooling system for the silicon chip. Up to 24 CLIPPs are interrogated by a multichannel integrated ASIC wire-bonded to the photonic chip. Optical routing is demonstrated on simultaneous WDM input signals that are labelled directly on-chip by suitable pilot tones without affecting the quality of the signals. Neither preliminary circuit calibration nor lookup tables are required, being the proposed control scheme inherently insensible to channels power fluctuations

    Almost everywhere convergence for modified Bochner Riesz means at the critical index for [rho] [greater than or equal to] 2

    Get PDF
    Title from PDF of title page (University of Missouri--Columbia, viewed on May 24, 2010).The entire thesis text is included in the research.pdf file; the official abstract appears in the short.pdf file; a non-technical public abstract appears in the public.pdf file.Dissertation advisor: Dr. Loukas Grafakos.Vita.Ph. D. University of Missouri--Columbia 2010.The Fourier transform is a mathematical operation that can be used with its inverse to rewrite a function as a sum of waves. It has been a useful mathematical tool for many applied sciences. Sometimes Fourier inversion is not possible in the classic sense and needs to be generalized. This is often done in a standard way, after choosing a summability method. A famous and much studied one is the method of the Bochner-Riesz means. We use techniques and results of harmonic analysis (Plancharel-type inequalities, partitions of the euclidean space, an analytic continuation argument, maximal operators, duality, potentials etc.) to investigate the method of the Bochner-Riesz means modified by A. Seeger. We prove that the Fourier inversion with respect to the modified Bochner-Riesz means holds pointwise almost everywhere for a certain class of functions. First of all, this result refines a Theorem of A. Carbery, J. Rubio de Francia and L. Vega. Secondly, it highlights the connection between the choice of the method one can use to invert the Fourier transform and the class of functions on which the method will work. Finally, it also shows how to generalize certain techniques to a scenario where we lack certain algebraic properties.Includes bibliographical references

    All-optical mode unscrambling on a silicon photonic chip

    Get PDF
    Propagation of light beams through scattering or multimode systems may lead to randomization of the spatial coherence of the light. Although information is not lost, its recovery requires a coherent interferometric reconstruction of the original signals, which have been scrambled into the modes of the scattering system. Here, we show that we can automatically unscramble four optical beams that have been arbitrarily mixed in a multimode waveguide, undoing the scattering and mixing between the spatial modes through a mesh of silicon photonics Mach-Zehnder interferometers. Using embedded transparent detectors and a progressive tuning algorithm, the mesh self-configures automatically and reset itself after significantly perturbing the mixing, without turning off the beams. We demonstrate the recovery of four separate 10 Gbits/s information channels, with residual cross-talk between beams of -20dB. This principle of self-configuring and self-resetting in optical systems should be applicable in a wide range of optical applications.Comment: 23 pages, 10 figure

    On-Chip OSNR Monitoring with Silicon Photonics Transparent Detector

    Get PDF
    Non-invasive integrated detectors, named contactless integrated photonic probe (CLIPP), are employed to demonstrate on-chip noise-independent power monitoring of optical channels and in-band optical signal to noise ratio (OSNR) measurement. The proposed technique is based on a two-step lock-in demodulation of optical signals that are suitably labeled with low-modulation-index labels. We demonstrate OSNR measurement from 8 up to 27 dB/0.1 nm on 10-Gb/s ON-OFF keying signals with a power level ranging from -25 up to -15 dBm. This approach provides a promising tool for the monitoring of channels in reconfigurable optical networks with flexible channel allocation strategy, where the small channel separation makes the measurement of the in-band OSNR challenging

    Wavelength locking of silicon photonics multiplexer for DML-based WDM transmitter

    Get PDF
    We present a wavelength locking platform enabling the feedback control of silicon (Si) microring resonators (MRRs) for the realization of a 4 × 10 Gb/s wavelength-division-multiplexing (WDM) transmitter. Four thermally tunable Si MRRs are employed to multiplex the signals generated by four directly modulated lasers (DMLs) operating in the L-band, as well as to improve the quality of the DMLs signals. Feedback control is achieved through a field-programmable gate array controller by monitoring the working point of each MRR through a transparent detector integrated inside the resonator. The feedback system provides an MRR wavelength stability of about 4 pm (0.5 GHz) with a time response of 60 ms. Bit error rate (BER) measurements confirm the effectiveness and the robustness of the locking system to counteract sensitivity degradations due to thermal drifts, even under uncooled operation conditions for the Si chip

    Automated routing and control of silicon photonic switch fabrics

    Get PDF
    Automatic reconfiguration and feedback controlled routing is demonstrated in an 8×8 silicon photonic switch fabric based on Mach-Zehnder interferometers. The use of non-invasive Contactless Integrated Photonic Probes (CLIPPs) enables realtime monitoring of the state of each switching element individually. Local monitoring provides direct information on the routing path, allowing an easy sequential tuning and feedback controlled stabilization of the individual switching elements, thus making the switch fabric robust against thermal crosstalk, even in the absence of a cooling system for the silicon chip. Up to 24 CLIPPs are interrogated by a multichannel integrated ASIC wirebonded to the photonic chip. Optical routing is demonstrated on simultaneous WDM input signals that are labelled directly on-chip by suitable pilot tones without affecting the quality of the signals. Neither preliminary circuit calibration nor lookup tables are required, being the proposed control scheme inherently insensible to channels power fluctuations
    • …
    corecore