19 research outputs found

    Editorial: Neurodegeneration: from Genetics to Molecules

    Get PDF
    Chronic degenerative diseases are one of the major public health problems, particularly those affecting the nervous system. They are characterized by the degeneration of specific cell populations that include several pathologies which contribute significantly to morbidity and mortality in the elderly population. Therefore, in recent years, the study of neuroscience has gained significant importance. Most of these neurodegenerative disorders are the result of a complex interaction between genetic and environmental factors that generate progression and can even determine its severity. The presence of mutations in genes as LRRK2, SNCA, PARK7, PARK2 or PINK1 is associated with Parkinson's disease. Mutations in genes such as APP, PS1 and PS2 are associated with familial Alzheimer's disease; while HTT gene mutations are the cause of Huntington's disease. In most cases, this condition is inherited in an autosomal dominant pattern, which means one copy of the altered gene in each cell is sufficient to cause the disorder. It is known that these mutations can also alter the proteins function; however, it has not yet been possible to fully understand how some genetic changes cause the disease or influence the risk of developing these disorders. Most symptoms seen in these conditions occurs when specific nerve cells are damaged or die generating a loss in brain communication. Also many of these mutations generate aggregation of intracellular or extracellular proteins affecting cell function and eventually causing neuronal death. It is unclear whether the presence of these aggregates play an important role in nerve cell death during the development of neurodegenerative diseases, or if they are simply part of the response of cells to the disease. Other mutations affect the mitochondrial function generating alterations in energy production and promoting the formation of unstable molecules such as free radicals. Under normal conditions, the harmful effects caused by free radicals, are offset within the cell. However, in pathological conditions, the presence of mutations can alter this process by allowing the accumulation of radicals and damaging or killing cells. On the other hand, we also know that these diseases may not have a direct genetic component, thus, the study of sporadic type neurodegenerative diseases is much more complex. Histopathological lesions as well as the cellular and molecular alterations are generally indistinguishable from familial cases. For this reason, it is important to understand the genetic and molecular mechanisms associated with this type of pathologies. In this sense, this issue aims to understand the molecular processes that occur in the brain, and how these are influenced by the environment, genetics and behavior

    The relationship between truncation and phosphorylation at the C-terminus of tau protein in the paired helical filaments of Alzheimer's disease

    Get PDF
    Acknowledgements: Authors want to express their gratitude to Dr. P. Davies (Albert Einstein College of Medicine, Bronx, NY, USA) and Lester I. Binder (NorthWestern, Chicago, IL, USA) for the generous gift of mAbs (TG-3, Alz-50, and MC1), and (TauC-3), respectively, and to M. en C. Ivan J. Galván-Mendoza for his support in confocal microscopy, and Ms. Maricarmen De Lorenz for her secretarial assistance. We also want to express our gratitude to the Mexican Families who donate the brain of their loved ones affected with Alzheimer's disease, and made possible our research. This work was financially supported by CONACyT grant, No. 142293 (For R.M).Peer reviewedPublisher PD

    Distinct Transcriptional Profile of PDZ Genes after Activation of Human Macrophages and Dendritic Cells

    No full text
    The PDZ (PSD95, Dlg and ZO-1) genes encode proteins that primarily function as scaffolds of diverse signaling pathways. To date, 153 PDZ genes have been identified in the human genome, most of which have multiple protein isoforms widely studied in epithelial and neural cells. However, their expression and function in immune cells have been poorly studied. Herein, we aimed to assess the transcriptional profiles of 83 PDZ genes in human macrophages (Mɸ) and dendritic cells (DCs) and changes in their relative expression during cell PRR stimulation. Significantly distinct PDZ gene transcriptional profiles were identified under different stimulation conditions. Furthermore, a distinct PDZ gene transcriptional signature was found in Mɸ and DCs under the same phagocytic stimuli. Notably, more than 40 PDZ genes had significant changes in expression, with potentially relevant functions in antigen-presenting cells (APCs). Given that several PDZ proteins are targeted by viral products, our results support that many of these proteins might be viral targets in APCs as part of evasion mechanisms. Our results suggest a distinct requirement for PDZ scaffolds in Mɸ and DCs signaling pathways activation. More assessments on the functions of PDZ proteins in APCs and their role in immune evasion mechanisms are needed

    NAT2 global landscape: Genetic diversity and acetylation statuses from a systematic review

    No full text
    Arylamine N-acetyltransferase 2 has been related to drug side effects and cancer susceptibility; its protein structure and acetylation capacity results from the polymorphism’s arrays on the NAT2 gene. Absorption, distribution, metabolism, and excretion, cornerstones of the pharmacological effects, have shown diversity patterns across populations, ethnic groups, and even interethnic variation. Although the 1000 Genomes Project database has portrayed the global diversity of the NAT2 polymorphisms, several populations and ethnicities remain underrepresented, limiting the comprehensive picture of its variation. The NAT2 clinical entails require a detailed landscape of its striking diversity. This systematic review spans the genetic and acetylation patterns from 164 articles from October 1992 to October 2020. Descriptive studies and controls from observational studies expanded the NAT2 diversity landscape. Our study included 243 different populations and 101 ethnic minorities, and, for the first time, we presented the global patterns in the Middle Eastern populations. Europeans, including its derived populations, and East Asians have been the most studied genetic backgrounds. Contrary to the popular perception, Africans, Latinos and Native Americans have been significantly represented in recent years. NAT2*4, *5B, and *6A were the most frequent haplotypes globally. Nonetheless, the distribution of *5B and *7B were less and more frequent in Asians, respectively. Regarding the acetylator status, East Asians and Native Americans harboured the highest frequencies of the fast phenotype, followed by South Europeans. Central Asia, the Middle East, and West European populations were the major carriers of the slow acetylator status. The detailed panorama presented herein, expands the knowledge about the diversity patterns to genetic and acetylation levels. These data could help clarify the controversial findings between acetylator states and the susceptibility to diseases and reinforce the utility of NAT2 in precision medicine

    NAT2 global landscape: Genetic diversity and acetylation statuses from a systematic review.

    No full text
    Arylamine N-acetyltransferase 2 has been related to drug side effects and cancer susceptibility; its protein structure and acetylation capacity results from the polymorphism's arrays on the NAT2 gene. Absorption, distribution, metabolism, and excretion, cornerstones of the pharmacological effects, have shown diversity patterns across populations, ethnic groups, and even interethnic variation. Although the 1000 Genomes Project database has portrayed the global diversity of the NAT2 polymorphisms, several populations and ethnicities remain underrepresented, limiting the comprehensive picture of its variation. The NAT2 clinical entails require a detailed landscape of its striking diversity. This systematic review spans the genetic and acetylation patterns from 164 articles from October 1992 to October 2020. Descriptive studies and controls from observational studies expanded the NAT2 diversity landscape. Our study included 243 different populations and 101 ethnic minorities, and, for the first time, we presented the global patterns in the Middle Eastern populations. Europeans, including its derived populations, and East Asians have been the most studied genetic backgrounds. Contrary to the popular perception, Africans, Latinos and Native Americans have been significantly represented in recent years. NAT2*4, *5B, and *6A were the most frequent haplotypes globally. Nonetheless, the distribution of *5B and *7B were less and more frequent in Asians, respectively. Regarding the acetylator status, East Asians and Native Americans harboured the highest frequencies of the fast phenotype, followed by South Europeans. Central Asia, the Middle East, and West European populations were the major carriers of the slow acetylator status. The detailed panorama presented herein, expands the knowledge about the diversity patterns to genetic and acetylation levels. These data could help clarify the controversial findings between acetylator states and the susceptibility to diseases and reinforce the utility of NAT2 in precision medicine

    The Proteome Profile of Olfactory Ecto-Mesenchymal Stem Cells-Derived from Patients with Familial Alzheimer’s Disease Reveals New Insights for AD Study

    No full text
    Alzheimer’s disease (AD), the most common neurodegenerative disease and the first cause of dementia worldwide, has no effective treatment, and its pathological mechanisms are not yet fully understood. We conducted this study to explore the proteomic differences associated with Familial Alzheimer’s Disease (FAD) in olfactory ecto-mesenchymal stem cells (MSCs) derived from PSEN1 (A431E) mutation carriers compared with healthy donors paired by age and gender through two label-free liquid chromatography-mass spectrometry approaches. The first analysis compared carrier 1 (patient with symptoms, P1) and its control (healthy donor, C1), and the second compared carrier 2 (patient with pre-symptoms, P2) with its respective control cells (C2) to evaluate whether the protein alterations presented in the symptomatic carrier were also present in the pre-symptom stages. Finally, we analyzed the differentially expressed proteins (DEPs) for biological and functional enrichment. These proteins showed impaired expression in a stage-dependent manner and are involved in energy metabolism, vesicle transport, actin cytoskeleton, cell proliferation, and proteostasis pathways, in line with previous AD reports. Our study is the first to conduct a proteomic analysis of MSCs from the Jalisco FAD patients in two stages of the disease (symptomatic and presymptomatic), showing these cells as a new and excellent in vitro model for future AD studies
    corecore