2,764 research outputs found

    Hardy's paradox and violation of a state-independent Bell inequality in time

    Get PDF
    Tests such as Bell's inequality and Hardy's paradox show that joint probabilities and correlations between distant particles in quantum mechanics are inconsistent with local realistic theories. Here we experimentally demonstrate these concepts in the time domain, using a photonic entangling gate to perform nondestructive measurements on a single photon at different times. We show that Hardy's paradox is much stronger in time and demonstrate the violation of a temporal Bell inequality independent of the quantum state, including for fully mixed states.Comment: Published Version, 4 pages, 3 figures. New, more boring titl

    Photonic Maxwell's demon

    Full text link
    We report an experimental realisation of Maxwell's demon in a photonic setup. We show that a measurement at the single-photon level followed by a feed-forward operation allows the extraction of work from intense thermal light into an electric circuit. The interpretation of the experiment stimulates the derivation of a new equality relating work extraction to information acquired by measurement. We derive a bound using this relation and show that it is in agreement with the experimental results. Our work puts forward photonic systems as a platform for experiments related to information in thermodynamics.Comment: 8 pages, 3 figure

    Single-photon entanglement generation by wavefront shaping in a multiple-scattering medium

    Full text link
    We demonstrate the control of entanglement of a single photon between several spatial modes propagating through a strongly scattering medium. Measurement of the scattering matrix allows the wavefront of the photon to be shaped to compensate the distortions induced by multiple scattering events. The photon can thus be directed coherently to a single or multi-mode output. Using this approach we show how entanglement across different modes can be manipulated despite the enormous wavefront disturbance caused by the scattering medium.Comment: 4 pages, 3 figures, reference adde

    Homodyne estimation of Gaussian quantum discord

    Get PDF
    We address the experimental estimation of Gaussian quantum discord for two-mode squeezed thermal state, and demonstrate a measurement scheme based on a pair of homodyne detectors assisted by Bayesian analysis which provides nearly optimal estimation for small value of discord. Besides, though homodyne detection is not optimal for Gaussian discord, the noise ratio to the ultimate quantum limit, as dictacted by the quantum Cramer-Rao bound, is limited to about 10 dB.Comment: 5+3 pages, 3 figures, published versio

    Quantum enhanced estimation of optical detector efficiencies

    Full text link
    Quantum mechanics establishes the ultimate limit to the scaling of the precision on any parameter, by iden- tifying optimal probe states and measurements. While this paradigm is, at least in principle, adequate for the metrology of quantum channels involving the estimation of phase and loss parameters, we show that estimat- ing the loss parameters associated with a quantum channel and a realistic quantum detector are fundamentally different. While Fock states are provably optimal for the former, we identify a crossover in the nature of the optimal probe state for estimating detector imperfections as a function of the loss parameter. We provide explicit results for on-off and homodyne detectors, the most widely used detectors in quantum photonics technologies

    Non-Gaussianity of quantum states: an experimental test on single-photon added coherent states

    Get PDF
    Non Gaussian states and processes are useful resources in quantum information with continuous variables. An experimentally accessible criterion has been proposed to measure the degree of non Gaussianity of quantum states, based on the conditional entropy of the state with a Gaussian reference. Here we adopt such criterion to characterise an important class of non classical states, single-photon added coherent states. Our studies demonstrate the reliability and sensitivity of this measure, and use it to quantify how detrimental is the role of experimental imperfections in our realisation

    Enhancing the Violation of the Einstein-Podolsky-Rosen Local Realism by Quantum Hyper-entanglement

    Get PDF
    Mermin's observation [Phys. Rev. Lett. {\bf 65}, 1838 (1990)] that the magnitude of the violation of local realism, defined as the ratio between the quantum prediction and the classical bound, can grow exponentially with the size of the system is demonstrated using two-photon hyper-entangled states entangled in polarization and path degrees of freedom, and local measurements of polarization and path simultaneously.Comment: Minor errors corrected. To appear on Physical Review Letter

    Requirements for two-source entanglement concentration

    Full text link
    Entanglement enhancement is a key task for quantum technologies. This operation performed on states produced by parametric down-conversion sources has been the object of several recent experimental investigations. In particular, conditional preparation by photon-subtraction has been shown to improve the entanglement of these states. Here we analyse the role played by non-Gaussian and Gaussian measurements in more general entanglement concentration operations performed on a pair of two-mode squeezed vacua. We find stringent requirements for achieving an improved entanglement enhancement by measuring jointly these two resource states.Comment: to appear on Quantum Measurements and Quantum Metrolog
    corecore