2,408 research outputs found

    Quantum Enhanced Multiple Phase Estimation

    Full text link
    We study the simultaneous estimation of multiple phases as a discretised model for the imaging of a phase object. We identify quantum probe states that provide an enhancement compared to the best quantum scheme for the estimation of each individual phase separately, as well as improvements over classical strategies. Our strategy provides an advantage in the variance of the estimation over individual quantum estimation schemes that scales as O(d) where d is the number of phases. Finally, we study the attainability of this limit using realistic probes and photon-number-resolving detectors. This is a problem in which an intrinsic advantage is derived from the estimation of multiple parameters simultaneously.Comment: Accepted by Physical Review Letter

    Hardy's paradox and violation of a state-independent Bell inequality in time

    Get PDF
    Tests such as Bell's inequality and Hardy's paradox show that joint probabilities and correlations between distant particles in quantum mechanics are inconsistent with local realistic theories. Here we experimentally demonstrate these concepts in the time domain, using a photonic entangling gate to perform nondestructive measurements on a single photon at different times. We show that Hardy's paradox is much stronger in time and demonstrate the violation of a temporal Bell inequality independent of the quantum state, including for fully mixed states.Comment: Published Version, 4 pages, 3 figures. New, more boring titl

    Photonic Maxwell's demon

    Full text link
    We report an experimental realisation of Maxwell's demon in a photonic setup. We show that a measurement at the single-photon level followed by a feed-forward operation allows the extraction of work from intense thermal light into an electric circuit. The interpretation of the experiment stimulates the derivation of a new equality relating work extraction to information acquired by measurement. We derive a bound using this relation and show that it is in agreement with the experimental results. Our work puts forward photonic systems as a platform for experiments related to information in thermodynamics.Comment: 8 pages, 3 figure

    Continuous-Variable Quantum Computing in Optical Time-Frequency Modes using Quantum Memories

    Full text link
    We develop a scheme for time-frequency encoded continuous-variable cluster-state quantum computing using quantum memories. In particular, we propose a method to produce, manipulate and measure 2D cluster states in a single spatial mode by exploiting the intrinsic time-frequency selectivity of Raman quantum memories. Time-frequency encoding enables the scheme to be extremely compact, requiring a number of memories that is a linear function of only the number of different frequencies in which the computational state is encoded, independent of its temporal duration. We therefore show that quantum memories can be a powerful component for scalable photonic quantum information processing architectures.Comment: 5 pages, 6 figures, and supplementary information. Updated to be consistent with published versio

    Homodyne estimation of Gaussian quantum discord

    Get PDF
    We address the experimental estimation of Gaussian quantum discord for two-mode squeezed thermal state, and demonstrate a measurement scheme based on a pair of homodyne detectors assisted by Bayesian analysis which provides nearly optimal estimation for small value of discord. Besides, though homodyne detection is not optimal for Gaussian discord, the noise ratio to the ultimate quantum limit, as dictacted by the quantum Cramer-Rao bound, is limited to about 10 dB.Comment: 5+3 pages, 3 figures, published versio

    Non-Gaussianity of quantum states: an experimental test on single-photon added coherent states

    Get PDF
    Non Gaussian states and processes are useful resources in quantum information with continuous variables. An experimentally accessible criterion has been proposed to measure the degree of non Gaussianity of quantum states, based on the conditional entropy of the state with a Gaussian reference. Here we adopt such criterion to characterise an important class of non classical states, single-photon added coherent states. Our studies demonstrate the reliability and sensitivity of this measure, and use it to quantify how detrimental is the role of experimental imperfections in our realisation

    Single-photon entanglement generation by wavefront shaping in a multiple-scattering medium

    Full text link
    We demonstrate the control of entanglement of a single photon between several spatial modes propagating through a strongly scattering medium. Measurement of the scattering matrix allows the wavefront of the photon to be shaped to compensate the distortions induced by multiple scattering events. The photon can thus be directed coherently to a single or multi-mode output. Using this approach we show how entanglement across different modes can be manipulated despite the enormous wavefront disturbance caused by the scattering medium.Comment: 4 pages, 3 figures, reference adde
    • 

    corecore