12 research outputs found

    Conserved regulation of the soybean early nodulin ENOD2 gene promoter in determinate and indeterminate transgenic root nodules.

    No full text
    The beta-glucuronidase (GUS) activity expressed from the soybean early nodulin ENOD2(B) gene promoter was localized histochemically in nodules of Lotus corniculatus and Trifolium repens. In both the determinate Lotus nodules and the indeterminate Trifolium nodules, activity was found in the parenchyma cells and especially in cells close to the vascular tissue of nodules. The characteristic cell-specific expression of the soybean ENOD2 gene was therefore maintained by the ENOD2(B) promoter in the two developmentally different nodule types. Important DNA elements recognized in transgenic nodules were identified by deletion and hybrid promoter analysis in Lotus corniculatus. An indispensable positive element (PE) and a possible tissue specific element was defined between positions -1792 and -1582 from the transcription start site. Another qualitative control element located between -380 and -53 conferred the ENOD2 characteristic cell type expression on hybrid promoters. This element contains the conserved nodulin gene sequences CTCTT and AAAGAT. In contrast to the ENOD2(B) promoter a chimeric leghemoglobin Ibc3-GUS gene was expressed in the infected cells of both types of nodules. In the indeterminate nodules expression was restricted to the interzone II-III and the active nitrogen-fixing zone III. Interchange of the distal strong positive element (SPE) of Ibc3 and the ENOD2 positive element resulted in an expression pattern different from that observed for the Ibc3 and ENOD2 genes, indicating that different interactions of trans-acting factors are required for regulation of early as well as late nodulin genes

    Isolation of DNA markers linked to a beet cyst nematode resistamce locus in Beta patellaris and Beta procumbens

    No full text
    In cultivated beet no useful level of resistance of the beet cyst nematode (BCN) Heterodera schachtii Schm. has been found, unlike the situation in wild species of the section Procumbentes. Stable introgression of resistance genes from the wild species into Beta vulgaris has not been achieved, but resistant monosomic additions (2n =18 + 1), diploids of B. vulgaris with an extra alien chromosome carrying the resistance locus, have been obtained. Here we describe a new series of resistant monosomic fragment addition material of B. patellaris chromosome 1 (pat-1). We further describe the cloning of a single-copy DNA marker that specifically hybridizes with a monosomic addition fragment of approximately 8 Mb (AN5-90) carrying the BCN resistance locus. This marker and another fragment-specific, single-copy DNA marker probably flank the BCN locus on the addition fragment present in the AN5-203 material, which is approximately 19 Mb in size. Furthermore, several specific repetitive DNA markers have been isolated, one of which hybridizes to AN5-90 and also to DNA from a smaller DNA segment of Beta procumbens, present in line B883, carrying a BCN resistance locus introgressed into the B. vulgaris genome. This suggests that the specific repetitive marker is closely linked to the BCN locus

    A novel type of DNA-binding protein interacts with a conserved sequence in an early nodulin ENOD12 promoter.

    No full text
    The pea genes PsENOD12A and PsENOD12B are expressed in the root hairs shortly after infection with the nitrogen-fixing bacterium Rhizobium leguminosarum bv. viciae or after application of purified Nod factors. A 199 bp promoter fragment of the PsENOD12B gene contains sufficient information for Nod factor-induced tissue-specific expression. We have isolated a Vicia sativa cDNA encoding a 1641 amino acid protein, ENBP1, that interacts with the 199 bp ENOD12 promoter. Two different DNA-binding domains were identified in ENBP1. A domain containing six AT-hooks interacts specifically with an AT-rich sequence located between positions –95 and –77 in the PsENOD12B promoter. A second domain in ENBP1 is a cysteine-rich region that binds to the ENOD12 promoter in a sequence non-specific but metal-dependent way. ENBP1 is expressed in the same cell types as ENOD12. However, additional expression is observed in the nodule parenchyma and meristem. The presence of three small overlapping ORFs in the 5-untranslated region of the ENBP1 cDNA indicates that ENBP1 expression might be regulated at the translational level. The interaction of ENBP1 with a conserved AT-rich element within the ENOD12 promoter and the presence of the ENBP1 transcript in cells expressing ENOD12 strongly suggest that ENBP1 is a transcription factor involved in the regulation of ENOD12. Finally, the C-terminal region of ENBP1 shows strong homology to a protein from rat that is specifically expressed in testis tissue
    corecore