31 research outputs found

    Megasatellites: a peculiar class of giant minisatellites in genes involved in cell adhesion and pathogenicity in Candida glabrata

    Get PDF
    Minisatellites are DNA tandem repeats that are found in all sequenced genomes. In the yeast Saccharomyces cerevisiae, they are frequently encountered in genes encoding cell wall proteins. Minisatellites present in the completely sequenced genome of the pathogenic yeast Candida glabrata were similarly analyzed, and two new types of minisatellites were discovered: minisatellites that are composed of two different intermingled repeats (called compound minisatellites), and minisatellites containing unusually long repeated motifs (126–429 bp). These long repeat minisatellites may reach unusual length for such elements (up to 10 kb). Due to these peculiar properties, they have been named ‘megasatellites’. They are found essentially in genes involved in cell–cell adhesion, and could therefore be involved in the ability of this opportunistic pathogen to colonize the human host. In addition to megasatellites, found in large paralogous gene families, there are 93 minisatellites with simple shorter motifs, comparable to those found in S. cerevisiae. Most of the time, these minisatellites are not conserved between C. glabrata and S. cerevisiae, although their host genes are well conserved, raising the question of an active mechanism creating minisatellites de novo in hemiascomycetes

    Imbibition in Disordered Media

    Full text link
    The physics of liquids in porous media gives rise to many interesting phenomena, including imbibition where a viscous fluid displaces a less viscous one. Here we discuss the theoretical and experimental progress made in recent years in this field. The emphasis is on an interfacial description, akin to the focus of a statistical physics approach. Coarse-grained equations of motion have been recently presented in the literature. These contain terms that take into account the pertinent features of imbibition: non-locality and the quenched noise that arises from the random environment, fluctuations of the fluid flow and capillary forces. The theoretical progress has highlighted the presence of intrinsic length-scales that invalidate scale invariance often assumed to be present in kinetic roughening processes such as that of a two-phase boundary in liquid penetration. Another important fact is that the macroscopic fluid flow, the kinetic roughening properties, and the effective noise in the problem are all coupled. Many possible deviations from simple scaling behaviour exist, and we outline the experimental evidence. Finally, prospects for further work, both theoretical and experimental, are discussed.Comment: Review article, to appear in Advances in Physics, 53 pages LaTe

    Discovery of permuted and recently split transfer RNAs in Archaea

    Get PDF
    Background: As in eukaryotes, precursor transfer RNAs in Archaea often contain introns that are removed in tRNA maturation. Two unrelated archaeal species display unique pre-tRNA processing complexity in the form of split tRNA genes, in which two to three segments of tRNAs are transcribed from different loci, then trans-spliced to form a mature tRNA. Another rare type of pre-tRNA, found only in eukaryotic algae, is permuted, where the 3 ’ half is encoded upstream of the 5 ’ half, and must be processed to be functional. Results: Using an improved version of the gene-finding program tRNAscan-SE, comparative analyses and experimental verifications, we have now identified four novel trans-spliced tRNA genes, each in a different species of the Desulfurococcales branch of the Archaea: tRNA Asp(GUC) in Aeropyrum pernix and Thermosphaera aggregans, and tRNA Lys(CUU) in Staphylothermus hellenicus and Staphylothermus marinus. Each of these includes features surprisingly similar to previously studied split tRNAs, yet comparative genomic context analysis and phylogenetic distribution suggest several independent, relatively recent splitting events. Additionally, we identified the first examples of permuted tRNA genes in Archaea: tRNA iMet(CAU) and tRNA Tyr(GUA) in Thermofilum pendens, which appear to be permuted in the same arrangement seen previously in red alga. Conclusions: Our findings illustrate that split tRNAs are sporadically spread across a major branch of the Archaea

    Arterio-venous gradients of IL-6, plasma and serum VEGF and D-dimers in human cancer

    Get PDF
    The circulating angiogenic factors vascular endothelial growth factor-A, interleukin-6 and the fibrin D-dimer fragment were measured in the mesenteric vein, the uterine vein, as well as in peripheral venous and arterial samples in 21 randomly selected patients with operable colorectal, ovarian and cervical carcinoma. In addition, immunohistochemistry for vascular endothelial growth factor-A and interleukin-6 was performed on colorectal tumours of such patients. Serum and plasma vascular endothelial growth factor-A were not significantly elevated in the vein draining the tumours, despite tumour cell expression of vascular endothelial growth factor-A. Serum vascular endothelial growth factor-A is therefore not all tumour-derived. In contrast, serum interleukin-6 was highly elevated in the draining veins in agreement with expression of interleukin-6 in the cytoplasm of tumour cells. In the megakaryoblastic cell line MEG-01, the expression of vascular endothelial growth factor-A was found to be regulated by interleukin-6. Thus, the higher platelet vascular endothelial growth factor-A load resulting in higher serum vascular endothelial growth factor levels in cancer patients may partly result from an interleukin-6 mediated up-regulation of the expression of vascular endothelial growth factor-A in the precursor of the platelet, i.e. the megakaryocyte. We also confirmed by immunohistochemistry that platelets adhere and aggregate on tumour endothelium. We propose that interleukin-6 indirectly promotes tumour angiogenesis through its up-regulation of the vascular endothelial growth factor-A load in platelets. In addition, the correlations found between peripheral venous interleukin-6 and peripheral venous fibrinogen and D-dimers levels, and the high D-dimer levels found in the draining vein of the tumour, in agreement with fibrin deposits found in the tumour stroma, suggest an important role for interleukin-6 in extra-vascular fibrinogen metabolism. Our results suggest a pivotal role for interleukin-6 in the intrinsic link between haemostasis and angiogenesis. This might be of importance in the development of anti-angiogenic agents based on interference with haemostasis

    Prospective study of intratumoral microvessel density, p53 expression and survival in colorectal cancer

    Get PDF
    Adjuvant treatment of patients with colorectal cancer is hampered by a lack of reliable prognostic factors in addition to the clinicopathological staging system. A poorly defined but considerable fraction of Astler–Coller stage B patients will experience tumour recurrence, and some of the stage C patients will probably survive for a prolonged time after surgery without adjuvant treatment. Assessing parameters related to tumour angiogenesis has provided valuable prognostic information in different tumour types. The formation of new microvessels is part of the malignant phenotype in the majority of tumours. Alterations in tumour-suppressor genes, such as the p53 gene, or oncogenes, such as the ras gene, have been found to be responsible for changing the local balance of pro- and antiangiogenic factors in favour of the former. In this prospective study, intratumoral microvessel density (IMD) was assessed by immunostaining tissue sections for CD31 and counting individual microvessels in selected and highly vascular regions in specimens of 145 colorectal cancer patients. p53 protein overexpression was semiquantitatively determined after immunohistochemistry. In both uni- and multivariate analysis, high IMD was significantly associated with shorter survival in the patients undergoing surgery with curative intent (Astler–Coller stages A–C). p53 added prognostic power to IMD, both in Astler–Coller stage B and stage C patients. An association between IMD and mode of metastasis was also noted. High IMD was strongly associated with the incidence of haematogenous metastasis during follow-up, but not with the presence of lymphogenic metastasis observed at surgery. This study confirms the results of previous retrospective analyses of IMD and survival in colorectal cancer and warrants a clinical validation by randomizing stage B tumour patients with high IMD and p53 overexpression between adjuvant treatment or not. © 1999 Cancer Research Campaig

    Molecular and pathological signatures of epithelial–mesenchymal transitions at the cancer invasion front

    Get PDF
    Reduction of epithelial cell–cell adhesion via the transcriptional repression of cadherins in combination with the acquisition of mesenchymal properties are key determinants of epithelial–mesenchymal transition (EMT). EMT is associated with early stages of carcinogenesis, cancer invasion and recurrence. Furthermore, the tumor stroma dictates EMT through intensive bidirectional communication. The pathological analysis of EMT signatures is critically, especially to determine the presence of cancer cells at the resection margins of a tumor. When diffusion barriers disappear, EMT markers may be detected in sera from cancer patients. The detection of EMT signatures is not only important for diagnosis but can also be exploited to enhance classical chemotherapy treatments. In conclusion, further detailed understanding of the contextual cues and molecular mediators that control EMT will be required in order to develop diagnostic tools and small molecule inhibitors with potential clinical implications
    corecore