5 research outputs found

    Fluoxetine selectively induces p53-independent apoptosis in human colorectal cancer cells

    Get PDF
    Fluoxetine has been shown to induce anti-tumour activity. The aim of this study was to determine the effect of fluoxetine on HCT116+/+ and p53 gene-depleted HCT116-/- human colorectal cancer cells and the mechanisms, including potential p53-dependence, of its action. Fluoxetine-induced apoptosis was investigated by mitochondrial membrane potential assay, Annexin V assay, two-step cell cycle analysis using NC-3000™ system and pharmacological inhibition assays. Fluoxetine induced very selectively concentration-dependent apoptosis in human colorectal cancer cells by altering mitochondrial membrane potential and inducing translocation of phosphatidylserine to the outer membrane layer. Further evidence of the preponderance of apoptosis in fluoxetine-induced cell death is provided by the finding that the cell death was not blocked by inhibitors of parthanatos, a form of cell death that results from overactivation of the enzyme poly (ADP-ribose) polymerase (PARP) but is different from apoptosis. Data obtained indicate fluoxetine caused cell cycle event at Sub-G1 and G0/G1 phases in both cell lines. In terms of apoptosis, there is no significant difference between the responses of the two cell lines to fluoxetine. In conclusion, fluoxetine's cytotoxicity induces mainly apoptosis and causes DNA fragmentation in human colorectal cancer cells, which seemed to be independent of the p53 protein, as no significant difference in death profiles in response to fluoxetine treatment was observed in both the p53-intact and the p53-deleted cell lines. Fluoxetine, therefore, has potential for being repurposed as a drug for the treatment of colon cancer and thus deserves further investigations in this context

    Echinococcose in Litauen

    Full text link

    Telemedicine strategy of the European Reference Network ITHACA for the diagnosis and management of patients with rare developmental disorders

    No full text
    Background: The European Reference Networks, ERNs, are virtual networks for healthcare providers across Europe to collaborate and share expertise on complex or rare diseases and conditions. As part of the ERNs, the Clinical Patient Management System, CPMS, a secure digital platform, was developed to allow and facilitate web-based, clinical consultations between submitting clinicians and relevant international experts. The European Reference Network on Intellectual Disability, TeleHealth and Congenital Anomalies, ERN ITHACA, was formed to harness the clinical and diagnostic expertise in the sector of rare, multiple anomaly and/or intellectual disability syndromes, chromosome disorders and undiagnosed syndromic disorders. We present the first year results of CPMS use by ERN ITHACA as an example of a telemedicine strategy for the diagnosis and management of patients with rare developmental disorders. Results: ERN ITHACA ranked third in telemedicine activity amongst 24 European networks after 12 months of using the CPMS. Information about 28 very rare cases from 13 different centres across 7 countries was shared on the platform, with diagnostic or other management queries. Early interaction with patient support groups identified data protection as of primary importance in adopting digital platforms for patient diagnosis and care. The first launch of the CPMS was built to accommodate the needs of all ERNs. The ERN ITHACA telemedicine process highlighted a need to customise the CPMS with network-specific requirements. The results of this effort should enhance the CPMS utility for telemedicine services and ERN-specific care outcomes. Conclusions: We present the results of a long and fruitful process of interaction between the ERN ITHACA network lead team and EU officials, software developers and members of 38 EU clinical genetics centres to organise and coordinate direct e-healthcare through a secure, digital platform. The variability of the queries in just the first 28 cases submitted to the ERN ITHACA CPMS is a fair representation of the complexity and rarity of the patients referred, but also proof of the sophisticated and variable service that could be provided through a structured telemedicine approach for patients and families with rare developmental disorders. Web-based approaches are likely to result in increased accessibility to clinical genomic services
    corecore