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Abstract 

Fluoxetine has been shown to induce anti-tumour activity. The aim of this study was to 

determine the effect of fluoxetine on HCT116+/+ and p53 gene-depleted HCT116-/- human 

colorectal cancer cells and the mechanisms, including potential p53-dependence, of its action. 

Fluoxetine-induced apoptosis was investigated by mitochondrial membrane potential assay, 

Annexin V assay, two-step cell cycle analysis using NC-3000™ system and pharmacological 

inhibition assays. Fluoxetine induced very selectively concentration-dependent apoptosis in 

human colorectal cancer cells by altering mitochondrial membrane potential and inducing 

translocation of phosphatidylserine to the outer membrane layer. Further evidence of the 

preponderance of apoptosis in fluoxetine-induced cell death is provided by the finding that 

the cell death was not blocked by inhibitors of parthanatos, a form of cell death that results 

from overactivation of the enzyme poly (ADP-ribose) polymerase (PARP) but is different 

from apoptosis. Data obtained indicate fluoxetine caused cell cycle event at Sub-G1 and 

G0/G1 phases in both cell lines. In terms of apoptosis, there is no significant difference 

between the responses of the two cell lines to fluoxetine. 

In conclusion, fluoxetine’s cytotoxicity induces mainly apoptosis and causes DNA 

fragmentation in human colorectal cancer cells, which seemed to be independent of the p53 

protein, as no significant difference in death profiles in response to fluoxetine treatment was 

observed in both the p53-intact and the p53-deleted cell lines. Fluoxetine, therefore, has 

potential for being repurposed as a drug for the treatment of colon cancer and thus deserves 

further investigations in this context.  

Key words 

Fluoxetine, colon cancer, apoptosis, Annexin V, cell cycle, mitochondrial membrane 

potential, PARP 
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1. Introduction 

   Colorectal cancer is one of the major worldwide causes of mortality. It is reported to be the 

third most common type of cancer throughout the world and the fourth most common cause 

of death, despite advances in therapy and increased screening rates (Shu Wang et al., 2017).  

Combinations of 5-fluorouracil (5-FU) and oxaliplatin (FOLFOX) or irinotecan (CPT-11; 

FOLFIRI) have improved response rates to chemotherapy in advanced colorectal cancer; 

however, resistance is still a major problem and an unmet clinical need. There is now some 

evidence that particular types of antidepressant drugs possess anti-tumour properties (Kannen 

et al., 2015; Coogan et al., 2009). Fluoxetine is currently prescribed as an anti-depressant and 

acts as a selective serotonin reuptake inhibitor (SSRI); it also reduces anxiety by regulating 

serotonin levels in the synaptic cleft. Some studies showed that selective serotonin reuptake 

inhibitors (SSRIs) possess potent apoptotic activity on different types of cells (Kannen et al., 

2015). Treatment with fluoxetine was reported to reduce tumour cell proliferation, DNA 

synthesis or colony formation in human and mouse breast carcinoma cell lines (Volpe et al., 

2003), although earlier studies in 1992 reported an increase in the number of mammary 

fibrosarcomas in mice which were treated with fluoxetine for 5 days, followed by an increase 

in the incidence of breast cancer after 15 weeks (Brandes et al., 1992). Later on, it was found 

that fluoxetine did not enhance pancreatic tumour proliferation but reduced lymphoma 

growth, modulating the T-cell-mediated immunity reaction via a 5-HT-dependent pathway 

(Jia et al., 2008; Frick et al., 2008). In some clinical studies, a 50% reduction of risk of colon 

cancer was reported in patients treated with fluoxetine (Coogan et al., 2009). Various animal 

studies also supported a reduction in colon cancer incidence and many different signalling 

pathways such as NF-κB, reactive oxygen species formation and cell cycle arrest were 

reported as the likely mechanisms of action in a variety of different carcinoma cells (Koh et 
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al., 2011; Tutton & Barkla, 1986; Kannen et al., 2011, 2012; Lee et al., 2010, Krishnan et al., 

2008; Stopper et al., 2014).     

   Although the above studies indicate differential effects of fluoxetine treatment in a number 

of cancer cell types, wider investigations of the mechanistic details of fluoxetine’s anti-

tumour activity in different cancer cell types are still required. Therefore, the present study 

was carried out, first to investigate if fluoxetine elicits anti-tumour activity in a variety of 

human tumour cell lines by selectively inducing apoptotic cell death and, second, to 

investigate if the mechanism of cell death induction by fluoxetine is influenced by the tumour 

suppressor p53 protein by assessing its effects  on two human colon carcinoma cell lines, the 

HCT116+/+ cell line with intact p53 gene and the HCT116-/- cell line without the gene (p53 

gene deleted). 

2. Materials and methods 

2.1. Cell culture 

   The HCT116 +/+ human colorectal cancer cells with intact p53 gene and the HCT116 

-/- human colorectal cancer cells with deleted p53 gene; ARPE19 (human retinal 

epithelial) and PNT2 (human prostate) non-carcinoma cell lines; A2780 (human 

ovarian carcinoma cells), A2780-CP70 (human ovarian carcinoma cells resistant to 

cisplatin), MCF-7 (human breast carcinoma cells), A549 (human lung carcinoma cells) 

were maintained according to the suppliers’ guidelines. Cells were grown in T75 flasks 

containing DMEM (D2429) or RPMI supplemented with 10% foetal bovine serum 

(FBS), 2 mM L-glutamine and 200 µM sodium pyruvate. At 70% confluence, the 

medium within the flask was removed and the cell monolayer was washed with 10 ml of 

phosphate buffered saline (PBS) solution. This was followed with the addition of 2 ml 

of Trypsin-EDTA solution (0.05% Trypsin, 0.02% EDTA), after which the flask was 
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transferred into an incubator (5% CO2, 37°C) for 3 min. Once cells had detached, the 

appropriate cell media (10 ml) for the cell line was added to the flask to deactivate the 

trypsin enzyme and prevent damage to the detached cells through prolonged trypsin 

exposure. The resultant cell suspension was transferred into a 25 ml tube and 

centrifuged at a speed of 400g for 5 min. The supernatant was subsequently removed, 

and the remaining pellet was re-suspended in 10 ml of appropriate culture medium. 

Cells were then counted and the numbers were adjusted for the subsequent experiments.  

 

2.2.Cell viability assay  

   Cells were seeded into 96-well plates at 2000 cells per well. After 24 h of incubation, cells 

were treated with varying doses of fluoxetine hydrochloride (1 nM to 100 µM) or vehicle 

(sterile water) for 96 h, after which the MTT assay was performed as previously reported 

(Kumar et al., 2016; Blackburn et al., 2016) by addition of 10 µl of MTT (3-(4,5-Dimethyl-2-

thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide). Following 4 h incubation with MTT, the 

content of each well was removed and the formazan crystals were dissolved in 

dimethylsulfoxide, DMSO (150 µl). Absorbance was then read at 540 nm on a Tecan Infinite 

50 plate UV reader. 

 

2.3.Mitochondrial membrane potential (MMP) assay  

   1 x 105 cells/ml were seeded into T25 flasks (total volume of 5 ml) and after 24 h elapsed 

cells were treated with vehicle control or fluoxetine at concentrations ranging from 10µM to 

60µM and left in the incubator for a further 24 h. Cells were then subjected to the MMP assay 

according to the manufacturer’s instructions. Briefly, the supernatant was removed and saved. 

The cells in the flask were incubated with 500 µl of trypsin for 5 min and centrifuged for 
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another 5 min at 400g. The supernatant was removed and the cell pellet was diluted in 2 ml of 

PBS. The NC-3000TM vial cassette containing DAPI was used to determine the cell count. 

Samples with a cell count of 1x106cells/ml were subjected to 2.5 µg/ml Solution 7 (JC-1) and 

incubated for 20 min. The stained cells were then centrifuged at 400g for 5 min at room 

temperature. The supernatant was removed and the cell pellets were washed twice with 1ml 

of PBS. The samples were re-suspended with 250 µl of ‘Solution 8’. An 8-chamber slide was 

used to load the samples with ~10µl, and the slides were put inside the NC-3000TM system 

which was previously set to analyse cells and provide the values for apoptotic cells by 

choosing the correct programme according to the instructions for “Mitochondrial Potential 

Assay” on the NC-3000TM system. After loading samples onto the slides and choosing the 

assay, the number of polarised/apoptotic cells was indicated.  

 

2.4.Annexin V assay  

   2 x 105 cells/ml of cells were seeded into T25 flasks containing 5 ml of complete media, 

which were incubated for 24 h at 37oC. After 24 h elapsed cells were treated with vehicle 

control or fluoxetine at concentrations ranging from 10 µM to 60 µM and left in the incubator 

for a further 24 h. Cells were then subjected to Annexin V assay according to the 

manufacturer’s instructions. Briefly, 1 ml of each sample containing cell count of 4 x105 

cells/ml in media was transferred to an eppendorf tube. In a separate eppendorf tube, a 

mixture of 940 µl of Roche buffer plus 20 µl of Annexin V, 20 µl of Propidium Iodide, 500 

µg/ml (Solution 16), and 20 µl of Hoechst 33342, 500µg/ml (Solution 15), was prepared. 

Cells were centrifuged at 400g for 5 min and the supernatant removed carefully without 

disturbing the pellet. Cells were re-suspended in 100 µl of the above mixture prepared earlier, 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

7 

 

mixed well and incubated for a further 15 min. 30 µl of each sample was then loaded onto A2 

slide and the data were analysed using NC-3000TM. 

 

2.5.Cell cycle analysis  

   1 x 106 cells/ml of cells were seeded into T25 flasks containing 5 ml of complete media and 

were incubated for 24 h at 37oC. After 24 h elapsed cells were treated with vehicle control or 

fluoxetine at concentrations ranging from 10 µM to 60 µM and left in the incubator for a 

further 48 h. Cells were then subjected to two-step cell cycle assay according to the 

manufacturer’s instructions. Briefly, 1 ml of cells (1 x106 cells/ml) was transferred to an 

eppendorf tube. In a separate eppendorf tube, a mixture of 1960µl of lysis buffer (Solution 

10) plus 40µl of 500µg/ml DAPI (Solution 12) was prepared. The eppendorf tubes containing 

cells were centrifuged at 400g for 5 min, supernatant was removed and cells were re-

suspended in 250µl of the above mixture, mixed well and incubated at 37oC for 5 min. 250µl 

of stabilization buffer (Solution 11) was then added to the cells and mixed well. 10µl of each 

sample was then loaded onto A8 slide and subjected to the two-step cell cycle assay using 

NC-3000™. The assay indicated the percentage of cells in each phase of a cycle. 

 

2.6.Pharmacological inhibition of endogenous PARP to assess its involvement in 

fluoxetine-induced cell death   

    The HCT116 +/+ and HCT116 -/- cells grown in T75 flasks were each seeded, following 

PBS rinsing, trypsinisation, trypsin inactivation and cell counting, into opaque, flat-bottom 

96-well (Falcon) plates or black, flat-bottom 96-well plates (Greiner Bio-One) at a density of 

1 x 105 cells/ml (100 µl/well) and incubated for 24 h at 37oC and 5% CO2. They were then 

exposed to fluoxetine for 24 – 48 h in the absence and presence of a range of concentrations 
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of two highly-potent and selective PARP inhibitors, one of which is only used experimentally 

(DPQ) while the other is used clinically in cancer treatments (olaparib), with appropriate 

vehicle (DMSO) controls included. Two viability assays that depend on two different 

readouts – the MTT assay (absorbance-based) and the Alamar Blue (AB) assay 

(fluorescence-based) – were then used to assess the changes to viability induced following 

the treatments. The use of two assays relying on separate cellular mechanisms allows for the 

detection of any potential artefacts that might be inherent in either assay, for example, due to 

the confounding interactions of test compounds with the assay reagents or cellular targets. 

The MTT assay was carried out by adding 10 µl of MTT (5 mg/ml in PBS), warmed to 37oC, 

to each well and incubating the plate for 3 h, following which the content of each well was 

aspirated and 100 µl of DMSO was added to solubilise the insoluble formazan. Absorbance 

was then read at 570 nm on a Clariostar plate reader (BMG LABTECH). The Alamar Blue 

(AB) assay was carried out as previously reported (Fatokun et al., 2013). Briefly, 10 µl of AB 

was added to each well and the plate was incubated for 3 h. It was then allowed to stand at 

room temperature for 5-10 min, after which fluorescence (of resorufin, the reduced and 

fluorescent form of AB) was read on a Clariostar plate reader (BMG LABTECH) at an 

excitation wavelength of 530 nm and an emission wavelength of 590 nm.  

 

2.7.Data presentation and statistical Analysis 

   Data were expressed as the mean ± standard error of the mean (S.E.M.) of n=4 separate 

experiments and each experiment was in triplicate (or as otherwise stated) and analysed using 

analysis of variance (ANOVA) followed by Tukey’s post-hoc test for multiple comparisons. 

A probability of P<0.05 was considered to be statistically significant as compared to control 

values; Tukey’s comparison was used with 95% confidence. The cytotoxic selectivity ratios 
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(CSR, the IC50 of the non-carcinoma cells divided by the IC50 of the carcinoma cells) were 

calculated, where a value higher than 1 indicated cytotoxic preference for cancer cells and a 

value less than 1 indicated a cytotoxicity preference for normal cells. 

2.8. Materials  

    Fluoxetine and the pan-caspase inhibitor Z-VAD-fmk were purchased from Tocris, UK. 

The PARP inhibitors DPQ (3,4-Dihydro-5-[4-(1-piperidinyl)butoxyl]-1(2H)-isoquinolinone) 

and olaparib were purchased from Sigma-Aldrich and Stratech Scientific Ltd., UK, 

respectively.  Phosphate buffered saline (PBS), Solution 8 (1µg/ml 4′,6-diamidino-2-

phenylindole (DAPI)), Solution 7 (5,5,6,6-tetrachloro-1,1,3,3-

tetraethylbenzimidazolcarbocyanine iodide of 200µg/ml JC-1), 50 µg/ml Annexin V-CF488A 

conjugate, Annexin V binding buffer (10x concentrate), Solution 15 (500 µg/ml Hoechst 

33342), Solution 16 (500 µg/ml Propidium Iodide), Solution 10 (Lysis buffer), Solution 11 

(stabilization buffer), Solution 12 (500 µg/ml DAPI), NC-Slide A8™, NC-Slide A2™ glass 

slides and via-1 cassettes were bought from ChemoMetec, Denmark. NC-3000™ image 

cytometer was used to perform the assays. MTT and media for growing cell lines and all 

supplements were purchased from Sigma Aldrich, UK and Life Technologies, UK, and cell 

lines were purchased from ATCC.  

 

3. Results 

3.1.Effects of fluoxetine on cell viability 

   Pre-treatment with fluoxetine induced concentration-dependent cytotoxicity in all cells 

examined (Fig. 1). The cytotoxicity was (P<0.001) significantly greater in colon carcinoma 

cells, where IC50 values were 3.19 + 0.23 µM and 4.73 + 0.5 µM, for HCT116 -/- and HCT 
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1 1 6 +/ +, r es p e cti v el y, as c o m p ar e d wit h  2 0. 5 7 + 2. 4 µ M a n d 2 4. 1 4 + 4. 3 µ M, f or n o n-

c ar ci n o m a c ells A R P E 1 9 a n d P N T 2 c ells, r es p e cti v el y (s e e Fi g. 1 f or eff e ct of fl u o x eti n e o n 

H C T 1 1 6 +/ + m or p h ol o g y). Fl u o x eti n e als o si g nifi c a ntl y ( P < 0. 0 5) i n d u c e d c yt ot o xi cit y i n 

A 2 7 8 0 a n d A 2 7 8 0- C P 7 0 c ells, wit h I C 5 0  v al u es of 1 0. 3 9 ± 3. 1 µ M a n d 2 0. 4 5 + 2. 8 µ M, 

r es p e cti v el y, b ut l ess c yt ot o xi cit y i n l u n g c ar ci n o m a c ells, A 5 4 9, wit h I C 5 0  of 2 8. 4 + 2. 0 µ M 

( Fi g. 2 A). T h e r es ults als o i n di c at e d t h at, of all t h e c ell li n es t est e d, fl u o x eti n e is m or e 

s el e cti v e i n i n d u ci n g c yt ot o xi cit y i n c ol o n c ar ci n o m a c ells as o p p os e d t o n or m al c ells, 

alt h o u g h t h e l e v el of s el e cti vit y is als o hi g h er t h a n 1 i n br e ast a n d o v ari a n c ar ci n o m a c ells, 

b ot h s e nsiti v e a n d r esist a nt t o cis pl ati n ( Fi g. 2 B, C). 

 

3. 2. Eff e cts of fl u o x eti n e o n mit o c h o n dri al m e m br a n e p ot e nti al ( M M P) i n h u m a n 

c ol o n c a n c er c ells   

   C ol or e ct al c a n c er c ells t h at w er e e x p os e d t o diff er e nt c o n c e ntr ati o ns of fl u o x eti n e w er e 

e x a mi n e d f or c h a n g es i n mit o c h o n dri al m e m br a n e p ot e nti al ( M M P) usi n g t h e M M P ass a y 

pr ot o c ol o n t h e i m a g e c yt o m et er N u cl e o C o u nt er N C- 3 0 0 0 ™ s yst e m. T his m et h o d all o ws 

i d e ntif yi n g t h e l e v el of li v e, a p o pt oti c a n d d e a d c ells. It h as b e e n d o n e b y m e as uri n g t h e 

mit o c h o n dri al tr a ns m e m br a n e p ot e nti al ( ∆ ψ m), a s its disr u pti o n is oft e n li n k e d t o t h e e arl y 

st a g es of a p o pt osis a n d t h e l oss of it is ass o ci at e d wit h n e cr osis a n d a p o pt o sis. T h e li p o p hili c 

c ati o ni c d y e J C- 1 ( 5, 5, 6, 6-t etr a c hl or o- 1, 1, 3, 3-t etr a et h yl b e n zi mi d a z ol c ar b o c y a ni n e i o di d e) 

dis pl a ys p ot e nti al- d e p e n d e nt a c c u m ul ati o n i n t h e mit o c h o n dri a. H e alt h y c ells ar e r e c o g ni z e d 

b y J C- 1 l o c ali z ati o n i n t h e mit o c h o n dri al m atri x d u e t o n e g ati v e c h ar g e f or m e d b y t h e i nt a ct 

mit o c h o n dri al m e m br a n e p ot e nti al w hi c h i n d u c es r e d fl u or es c e n c e. I n c ells t h at u n d er g o 

a p o pt osis, mit o c h o n dri al p ot e nti al c oll a ps es a n d J C- 1 a c c u m ul at es i n t h e c yt os ol, est a blis hi n g 

gr e e n fl u or es c e n c e. C ells h a v e als o b e e n st ai n e d wit h D A PI t h at r e c o g ni z es n e cr oti c a n d l at e 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

11 

 

apoptotic cells which appear in blue fluorescence, resulting in decreased red/green 

fluorescence intensity ratio. Data obtained are as shown in the scatter plots in Fig. 3, 

supported by histograms to additionally show the percentage of apoptotic cells in Fig. 4. 

   Fig. 3 shows that, as the concentration of fluoxetine increased (30.0 µM and 60.0 µM),  the 

intensity of green colour was more evident, which was indicative of more cells in the 

apoptotic phase when compared to the cells which were treated with control or a lower 

concentration of fluoxetine (10.0 µM), which showed red fluorescence (live cells). This is 

also reflected in Fig. 4, where cells treated with 10.0 µM of fluoxetine showed comparable 

results to control cells in both cell lines, while as the concentration of fluoxetine increased in 

both cell lines the percentage of apoptotic cells increased. For example, at 60.0 µM of 

fluoxetine, the percentage of apoptotic cells significantly  increased from 12.00 ± 1.53% to 

47.33 ± 0.33% (P<0.001) in HCT116 +/+, and from 11.33± 1.67% to 31.33 ± 6.49% (P<0.05) 

in HCT116-/- (Fig. 4). Interestingly there was a significant difference (P<0.05) between the 

number of apoptotic cells in the two cell lines when treated with 60.0 µM of fluoxetine. In 

summary, fluoxetine remarkably altered mitochondrial membrane potential in both cell lines. 

No significant difference was observed in the levels and nature of cell death between the two 

cell lines when treated with the lower concentrations of fluoxetine; however, at 60.0 µM 

fluoxetine induced lower percentage of apoptotic cells in HCT116 -/- compared to HCT116 

+/+.  

 

3.3.Effect of fluoxetine on phosphatidylserine externalisation, Annexin V assay  

   In an attempt to further investigate the effects of fluoxetine, Annexin V assay was 

performed on both colon carcinoma cell lines. Annexin V assay detects phosphatidylserine 

externalization using Annexin V conjugate. Phosphatidylserine is a phospholipid located on 
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the cell membrane side facing the cytosol, and its translocation to the outer membrane layer is 

associated with early apoptosis. Annexin V is a protein that binds to phosphatidylserine in a 

calcium-dependent manner with high selectivity. However, Annexin V binds not only to early 

apoptotic cells but also to late apoptotic and necrotic cells. Therefore, cells have also been 

stained with Propidium Iodide (PI), which detects only late apoptotic and necrotic cells that 

have lost their membrane integrity. Furthermore, Hoechst 33342 has been added, which 

detects all cells. NucleoCounter® NC- 3000™ system detects violet light, which is total cell 

population stained with Hoechst 33342. Early apoptotic cells stained with Annexin V and 

Hoechst 33342 give violet and green fluorescence, while non-viable and late apoptotic cells 

stained with PI and Hoechst 33342 establish red and violet light. The fluorescence intensities 

of early apoptotic cells against non-viable cells are presented on a scatter plot (see Fig. 5). 

The histograms comparing the percentages of cells in both early and late apoptosis are shown 

in Figure 6. As the concentration of fluoxetine increased, the percentages of early and late 

apoptotic cells were increased in both cell lines in a concentration-dependant manner, 

reaching significance at 30.0 (P<0.01) and 60.0 µM (P<0.001) of fluoxetine, as compared to 

cells treated with vehicle control. For example, in cells treated with 60.0 µM fluoxetine, the 

percentage of  cells in the early apoptotic phase increased from 2.0 ± 1.0% to 19.0 ± 2.0% in 

HCT116+/+, and from 5.5 ± 2.5% to 22.0  ± 1.0% in HCT116-/-. In addition, the percentage 

of late apoptotic cells remarkably increased from 7.5 ± 0.5% to 79.5 ± 1.5% in HCT116+/+, 

and from 4.0 ± 2.0% to 76.6 ± 1.5% in HCT116-/-. No significant difference was observed in 

the responses of the two cell lines when they were treated with the concentrations of 

fluoxetine.  

In summary, fluoxetine altered membrane integrity and established the translocation of 

phosphatidylserine from inner to outer membrane layer in both cell lines. 
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3.4.Effect of fluoxetine on cell cycle arrest 

   In an attempt to investigate if fluoxetine induces cell cycle arrest, a cell cycle analysis was 

performed using the NucleoCounter® NC-3000™ system by rapid quantification of DNA 

content, which was measured using fluorescence reading of DAPI-stained cells. This assay 

determines cell sorting at different phases of the cell cycle. Scatter plots are shown in Fig. 7. 

The cell population treated with 10.0 µM of fluoxetine was comparable to those in the control 

group in both cell lines at different phases of cell cycle.  However, when cells were pre-

treated with 30.0 and 60.0 µM of fluoxetine, cell population at sub-G1 was increased 

(P<0.01, P<0.001) in a concentration-dependent manner, which is indicative of DNA 

fragmentation (Fig. 7). The percentage of cells increased from 2.3 ± 0.3 % to 15.0 ± 0.5% 

(30.0 µM) and 23.0 ± 2.6 % (60.0 µM) in HCT 116 +/+; and from 4.3 ± 1.2% to 18.6 ± 2.9 % 

(30.0 µM) and  28.3 ± 0.8% (60.0 µM) in HCT116 -/- cells (Fig. 8). No significant difference 

was observed between the two cell lines when treated with the same range of concentrations 

of fluoxetine.  

   Cell percentage in G0/G1 phase was comparable in the control and 10.0 µM groups. 

However, a significant reduction (P<0.01) in G0/G1 was observed in the cells treated with 

30.0 µM of fluoxetine, with values decreasing to 37.0 ± 0.7% and 41.0 ± 4.0% in HCT116 

+/+ cells and HCT116-/- cells from control values of 58.0 ± 0.5 and 61.3 ± 1.8%, 

respectively. Increasing the concentration of fluoxetine to 60.0 µM further reduced (P<0.01) 

the cell populations in both cell lines, with 34.3 ± 4.2% for the HCT116+/+ cells and 32.0 ± 

0.6% for the HCT-/- cells as compared to control values. At S phase, there was no noticeable 

difference between cells treated with 10.0 µM and 30.0 µM of fluoxetine and control, but a 

slight increase (P>0.05) was demonstrated when cells were treated with 60.0 µM of 

fluoxetine, where cell percentage increased from 14.6 ± 1.1% (30.0 µM) to 20.0 ± 1.5 % in 

HCT116+/+ and from 13.3 ±0.3%  (30.0 µM) to 19.3 ± 0.6% in HCT116-/-. Cell percentages 
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in G2/M phase did not show a significant difference at different concentrations of fluoxetine 

as compared to control values in both cell lines (Fig. 8).  

3.5.Effect of PARP inhibitors on fluoxetine-induced toxicity and cell death 

   In response to toxic insults, cells die through activation of a variety of death paradigms, of 

which apoptosis and necrosis are examples. It is therefore important in mechanistic studies to 

establish whether the profile of cell death induced by a toxic agent is consistent with the 

dominance of a particular paradigm or with substantial co-activation of a number of different 

forms of cell death. We, therefore, investigated the potential involvement of PARP, which is 

associated with the DNA damage response and mediates a unique form of cell death 

(parthanatos), in fluoxetine-induced toxicity. Two highly-potent and selective 

pharmacological inhibitors of PARP, one of which (DPQ) is an experimental agent, while the 

other (olaparib) is a licensed drug, were each tested against fluoxetine. Data obtained using 

two different viability assays, the MTT assay and the Alamar Blue (AB) assay, were similar. 

The results further confirmed that fluoxetine induced concentration-dependent reduction in 

the viability of both the HCT+/+ and HCT-/- cells and there was no difference in the 

sensitivities of both cells to fluoxetine (Fig. 9, A and B). Neither DPQ (7.5 – 60 µM) nor 

olaparib (10 nM - 10µM) was able to modulate fluoxetine-induced cell death (Fig. 9, C-F). 

 

4. Discussion 

  Colorectal cancer is one of the major worldwide causes of mortality. Currently, there is no 

single treatment available that could cure the cancer or combine high potency and/or high 

specificity with little or minor side effects. This study investigated the effect of the anti-

depressant drug fluoxetine on human carcinoma cell lines, with a view to identifying the 
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mechanisms and potential specificity of its cytotoxicity and thus its anti-tumour potential, 

especially against colorectal cancer. In the first part of the study, the cytotoxicity induced by 

fluoxetine was assessed using a variety of human carcinoma cell lines. Results indicated that 

fluoxetine induced concentration-dependent cytotoxicity, which was highly selective for 

human colon, breast and ovarian carcinoma cells versus non-cancerous cell lines. The IC50 

values for fluoxetine cytotoxicity in both colon carcinoma cell lines HCT+/+ (in which the 

p53 gene is intact) and HCT-/- (in which p53 is deleted) are comparable, indicating that the 

p53 gene is unlikely to play a role in fluoxetine-induced cytotoxicity in these cell lines. An 

attempt was then made to use these two human colon carcinoma cells to further understand 

the mechanisms underlying fluoxetine-induced cytotoxicity. Several past investigations have 

provided compelling evidence that p53 protein status can have a profound effect on the 

susceptibility to apoptosis induced by a variety of apoptotic stimuli (Lowe et al. 1993, Fisher, 

1994). Such studies have shown that deletion or mutation of p53 diminished the apoptotic 

response to chemotherapeutic drugs and /or increased resistance to anticancer therapies 

(Lowe et al., 1993; Harris, 1996). However, whilst p53 is required for DNA damage-induced 

apoptosis in some cell types, its presence and integrity may even be counteractive for drug 

sensitivity in other cells. For example, increased sensitivities to chemotherapeutic drugs were 

shown in inactive p53 primary mouse fibroblasts, human breast cancer cells (MCF-7),  

human papillomavirus-type-16 E6 (HPV16 E6) and testicular germ cell tumour cells 

(Hawkins et al., 1996; Fan et al., 1995; Burger et al., 1997, 1998). Induction of p53-

independent apoptosis was shown to be via ceramide through the sphingomyelin-signalling 

pathway and Fas-dependent mechanisms (Jarvis et al., 1996; Burger et al., 1999). Later 

studies also reported cell death via p53-independent pathways via p73 activation, which is 

regulated by tyrosine kinase c-Abl in the apoptotic response to DNA damage (Irwin et al., 

2003; Ozaki and Nakagawara, 2005; Roos and Kaina, 2006).  In addition, induction of 
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apoptosis via a p53-independent pathway has been reported for other compounds such as 

rapamycin in non-small cell lung cancer (Miyake et al., 2012). Such studies demonstrated a 

down-regulation of the expression levels of Bcl-2, which leads to an increase in the level of 

cytochrome c from mitochondria, which in turn would activate caspase cascades. Another 

possible target for fluoxetine could be TRAIL (tumour necrosis factor-related apoptosis-

induced ligands) receptors/pathway, as TRAIL-induced apoptosis has been reported in colon 

cancer cell lines, which was not dependent on p53 (Galligan et al., 2005). Overall, the present 

study supports the unlikely involvement of p53 in mediating fluoxetine cytotoxicity, 

indicating the activation of an apoptotic pathway independent of p53 in HCT116 human 

colon carcinoma cells. 

   This study also investigated whether fluoxetine-induced cytotoxicity is related to altering 

mitochondrial membrane potential. The finding indicated a major change in mitochondrial 

membrane potential in colon carcinoma cells, in response to fluoxetine. This finding is in line 

with previous studies which showed induction of apoptosis through mitochondrial membrane 

dysfunction in hepatocellular carcinoma cells (Mun et al., 2013). A very similar effect has 

also been found in human neuroblastoma cells, in which apoptosis was induced by 

mitochondrial membrane potential alteration which involved reactive oxygen species 

accumulation (Choi et al., 2017). Reactive oxygen species accumulation has also been 

reported in human ovarian carcinoma cells treated with fluoxetine (Lee et al., 2010). Cancer 

cells were found to increase the activity of lactate transporters alkalizing their ipH 

(intracellular pH) (Cairns et al., 2011; Daniel et al., 2005). This process leads to 

hyperpolarization of mitochondrial membrane potential, which allows the tumour to use 

oxidative phosphorylation and glycolysis (Jones and Schulze, 2011). Previous studies have 

shown that fluoxetine inhibits tumour energy generation machinery, reducing proliferation in 

cancer cells (Kannen et al., 2015). This was found together with reduced angiogenesis and 
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impaired tumour development (Kannen et al., 2015). The mitochondrial membrane 

depolarization was promoted by reducing the activity of lactate- and glucose-related 

transporters (Edinger and Thompson, 2002). Furthermore, studies have demonstrated that 

lactate efflux from glycolysis is regulated by cell-surface glycoprotein (Cardone et al., 2005; 

Slomiany et al., 2009). In hypoxia, lactate transporters alkalise ipH of cancer cells, thus 

generating energy and promoting cell growth (Cardone et al., 2005; Beasley et al., 2001; 

Silva et al., 2009). Researchers have found that fluoxetine slightly decreased ipH in HT29 

cells (Kannen et al., 2015). Therefore, future studies should be focused on hypoxic colon 

cancer cells to confirm that fluoxetine decreases ipH and reduces the activity of lactate 

transporters in them. In addition, fluoxetine could be tested in combination with 

bevacizumab, a monoclonal antibody that exerts anti-tumour activity by targeting vascular 

endothelial growth factor (VEGF),  thus impairing angiogenesis in the tumour. Furthermore, 

in vivo study has shown that the anti-apoptotic protein Bcl-2 was significantly decreased in 

tumours in fluoxetine-administered mice (Frick et al., 2011). Therefore, future experiments 

could investigate the influence of the Bcl-2 protein and gene on the other mechanistic 

pathways underlying the anti-tumour activity of fluoxetine.  

   In the present study, further confirmation of induction of apoptosis by fluoxetine came from 

Annexin V study where externalization of phosphatidylserine due to progressive loss of 

membrane integrity was observed. This is in line with previous studies which reported 

externalization by fluoxetine treatment of phosphatidylserine in Jurkat cells (Charles et al., 

2017), as well as human oral cancer cells (Lin et al., 2014) and the HD29 human colon cancer 

cell line (Kannen et al., 2012). The later study also indicated an effect of fluoxetine on cell 

cycle in the G0/G1 phase (Kannen et al., 2012). Our study also indicated a sub- G1 event, 

which was indicative of DNA fragmentation/apoptotic event (Wadman, 2013). Our study 

showed a concentration-dependent effect associated with fluoxetine treatment in both cell 
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lines. The number of cells with fragmented DNA in sub G1 phase increased in comparison 

with untreated controls. This observed increase in DNA fragmentation was accompanied by a 

reduction in the percentage of cells treated with higher concentrations of fluoxetine in the 

G0/G1 phase, further suggesting a cell death by apoptosis without indication of a cell cycle 

arrest in G0/G1 phase over 48 h contact time with fluoxetine.  

    Additional studies using experimental and clinically-used pharmacological inhibitors of 

PARP, an enzyme that mediates a distinct, non-apoptotic cell death modality, provided 

evidence that supports the fact that fluoxetine toxicity induces predominantly apoptosis, as 

the PARP inhibitors had no effect on the toxicity. It should be emphasised that, in all assays 

performed in the present study, deletion of the p53 gene did not lead to any differential effect 

of fluoxetine on mitochondrial membrane potential, Annexin V staining and cell cycle events 

in the human HCT116 colon carcinoma cell line.  

   Colorectal cancer is often caused by the mutation of SMAD4 tumour suppressor gene 

(Ormanns et al., 2017); therefore, future work should also consider using human colorectal 

cancer cells with intact and deleted SMAD4 gene, as well as those in which other tumour 

suppressor genes such as APC, DCC, MLH1 and MLH2 are intact or have been deleted. 

 

5. Conclusion 

   The present study shows that fluoxetine induces anti-proliferative effects in a variety of 

human carcinoma cell lines, with higher selectivity for tumour cells versus normal cells in 

colon, breast and ovarian carcinoma cells than in lung carcinoma cells. Further experiments 

focusing on colon carcinoma cells indicated the establishment of apoptotic events as a result 

of a change in mitochondrial membrane potential and translocation of phosphatidylserine. 

Further evidence for the induction of apoptosis came from cell cycle analysis where an 
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increase in the cell population at sub-G1 was indicative of DNA fragmentation/apoptosis-

related event. Apoptosis was also confirmed as the predominant pathway that mediates 

fluoxetine-induced cell death. The present study did not find evidence for the involvement of 

the p53 gene in the cytotoxicity induced by fluoxetine in the human colon carcinoma cells 

HCT 116 +/+ and HCT116 -/- . The only difference between the two cell lines was observed 

when fluoxetine was added at the highest concentration of 60 µM in the measurement of the 

mitochondrial membrane potential. Therefore, these findings suggest that fluoxetine is likely 

to  induces p53-independent apoptosis through mitochondrial pathway that leads to DNA 

fragmentation depending on the concentration used. In other words, as revealed in the present 

study, p53 is unlikely to be of primary importance for the sensitivity of the tested human 

colon carcinoma cells to the cytotoxic effects of fluoxetine. The study provides new insights 

into some key molecular mechanisms underpinning the cytotoxicity of fluoxetine and 

demonstrates a potential for its repurposing for cancer treatment. The knowledge furnished 

by the work is valuable to developing more efficacious and targeted anti-cancer treatments. 
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Fig. 1.  Representative photomicrographs showing the effects of  fluoxetine on HCT 116 +/+  

and HCT 116 -/- (human colon carcinoma parental and p53 deleted, respectively) cells 

under the light microscope (resolution 20x); a) control (0µM), b) 10µM, c) 30µM and 

d) 60µM of fluoxetine after 24 h exposure time. 
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Fig. 2. Histobars indicating (A) the IC50s and (B, C)  the selectivity for fluoxetine-induced 

cytotoxicity compared to normal /non-cancerous cells, ARPE19 and PNT2 in a variety of 

human carcinoma cells: colon, HCT116 +/+ and HCT116 -/-; breast, MCF-7; lungs, A549; 

ovarian (cisplatin sensitive), A2780; ovarian (cisplatin-resistant), A2780-CP70; and normal 

/non-cancerous cells, ARPE19 and PNT2 cells. Each bar represents the mean + S.E.M. of 

n=4.  
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Fig. 3. Representative scatter plots indicating the red/green intensity and DAPI fluorescence 

of HCT116 +/+ and HCT116-/- cells treated for 24 h with 0.0 µM, 10.0 µM, 30.0 µM and 

60.0 µM of fluoxetine. 
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Fig. 4: Histograms showing the percentage of apoptotic colorectal cancer cells (HCT116+/+ 

and HCT116-/-) after 24 h exposure to fluoxetine (10.0 µM, 30.0 µM, and 60.0 µM) 

or control, captured using the MMP assay. Each column represents mean ± S.E.M., 

n=3. * P<0.05, **P<0.01, *** P<0.001 compared to the control and #P<0.05 

compared to HCT116 +/+. 
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Fig. 5. Representative scatter plots indicating the green/red light intensity of stained 

HCT116+/+ and HCT116-/- cells treated for 24 h with 0.0 µM, 10.0 µM, 30.0 µM and 60.0 

µM of fluoxetine. 
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Fig. 6. Histograms showing the percentage of early apoptotic and late apoptotic cells after 

performing Annexin V assay on colorectal cancer cells (HCT116+/+ and HCT116-/-). 

Data set is based on 24 h fluoxetine exposure at 0.0 µM (Control), 10.0 µM, 30.0 µM 

and 60.0 µM of fluoxetine. Each column represents mean ± S.E.M., n=3. * P<0.05, 

**P<0.01, *** P<0.001 compared to the control. 
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Fig. 7. Representative scatter plots indicating the percentage of HCT116+/+ and HCT116-/- 

cells in Sub-G1 (M1), G0/G1 (M2), S (M3) and G2 (M4) phases after 48 h of exposure to 

different concentrations (0.0 µM, 10.0 µM, 30.0 µM, 60.0 µM) of fluoxetine. 
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Fig. 8. Histograms showing the percentage of cells in Sub-G1, G0/G1, S and G2 phases after 

performing two-step cell cycle assay on colorectal cancer cells (HCT116+/+ and 

HCT116-/-). Data set is based on 48 h exposure to fluoxetine at 0.0 µM (Control), 

10.0 µM, 30.0 µM, and 60.0 µM. Each column represents mean ± S.E.M. of n=3.* 

P<0.05, **P<0.01, *** P<0.001 compared to the control. 
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Fig. 9. Concentration-dependent effects of fluoxetine (FXT) on the viability of the HCT +/+ 

and HCT -/- cells, as quantified by (A) the MTT assay (absorbance-based), and (B) the 

Alamar Blue (AB) assay (fluorescence-based); and the lack of effect on fluoxetine-induced 

cell death of the highly-potent and selective inhibitors of PARP-mediated cell death, DPQ (an 

experimental agent) and olaparib (OPB, used in the clinic), as quantified for DPQ by (C) the 

MTT assay and (D) the AB assay; and for olaparib by (E) the MTT assay and (F) the AB 

assay. Values represent the mean ± S.E.M. of n=3. ***P<0.0001 compared to the control.     
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