294 research outputs found

    Moderate temperature detector development

    Get PDF
    The development of (Hg, Cd)Te detectors for 8 to 12 micrometer wavelength regions capable of achieving significantly improved sensitivity at noncryogenic temperatures is discussed

    Improved detectivity of pyroelectric detectors

    Get PDF
    High detectivity single-element SBN pyroelectric detectors were fabricated. The theory and technology developments related to improved detector performance were identified and formulated. Improved methods of material characterization, thinning, mounting, blackening and amplifier matching are discussed. Detectors with detectivities of 1.3 x 10 to the 9th power square root of Hz/watt at 1 Hz are reported. Factors limiting performance and recommendations for future work are discussed

    Activation and discovery of earth-abundant metal catalysts using sodium tert-butoxide

    Get PDF
    First-row, earth-abundant metals offer an inexpensive and sustainable alternative to precious-metal catalysts. As such, iron and cobalt catalysts have garnered interest as replacements for alkene and alkyne hydrofunctionalization reactions. However, these have required the use of air- and moisture-sensitive catalysts and reagents, limiting both adoption by the non-expert as well as applicability, particularly in industrial settings. Here, we report a simple method for the use of earth-abundant metal catalysts by general activation with sodium tert-butoxide. Using only robust air- and moisture-stable reagents and pre-catalysts, both known and, significantly, novel catalytic activities have been successfully achieved, covering hydrosilylation, hydroboration, hydrovinylation, hydrogenation and [2π+2π] alkene cycloaddition. This activation method allows for the easy use of earth-abundant metals, including iron, cobalt, nickel and manganese, and represents a generic platform for the discovery and application of non-precious metal catalysis

    Poznań model of knowledge transfer

    No full text
    Strategiczny rozwój nauki i technologii w Polsce do 2015 r. uwzględnia następujące priorytety: zdrowie, środowisko i rolnictwo, energia i infrastruktura, nowoczesne technologie dla gospodarki oraz społeczeństwo w warunkach przyspieszonego ale zrównoważonego rozwoju społecznego-gospodarczego. Obszary te wzajemnie się przenikają tworząc spójny Krajowy Program Badań Naukowych i Prac Rozwojowych. Motorem rozwoju w tych obszarach będą ze strony nauki przede wszystkim ZAAWANSOWANE TECHNOLOGIE. Istotą kompleksowego modelu transferu wiedzy, wygenerowanego i realizowanego w Poznaniu, jest zbudowanie efektywnej relacji invention (w uczelniach i instytutach badawczych) - innovation (w Poznańskim Parku Naukowo-Technologicznym Fundacji UAM) poprzez wytworzenie wszystkich elementów niezbędnych, dla efektywnego transferu wiedzy, w szczególności polskich osiągnięć naukowo-technologicznych do praktyki gospodarczej.The strategic development of science and technology in Poland for the period until 2015 comprises a range of priorities: health, environment and agriculture, energy and infrastructure, advanced technologies for the economy, and society in the conditions of accelerated yet sustainable socioeconomic development. All these areas influence and permeate one another, making up the consistent National Programme for Scientific Research and Development [3]. In the domain of science, the main driving force for development will be ADVANCED TECHNOLOGIES. The foundation of the comprehensive knowledge transfer model developed and implemented in the city of Poznań is building an effective relationship between invention (pursued at universities and research institutes) and innovation (as in the Poznań Science and Technology Park of the Adam Mickiewicz University Foundation) by creating all elements which are necessary for the effectiv
    corecore