14 research outputs found

    Antibacterial Activity and Cytocompatibility of Bone Cement Enriched with Antibiotic, Nanosilver, and Nanocopper for Bone Regeneration

    No full text
    Bacterial infections due to bone replacement surgeries require modifications of bone cement with antibacterial components. This study aimed to investigate whether the incorporation of gentamicin or nanometals into bone cement may reduce and to what extent bacterial growth without the loss of overall cytocompatibility and adverse effects in vitro. The bone cement Cemex was used as the base material, modified either with gentamicin sulfate or nanometals: Silver or copper. The inhibition of bacterial adhesion and growth was examined against five different bacterial strains along with integrity of erythrocytes, viability of blood platelets, and dental pulp stem cells. Bone cement modified with nanoAg or nanoCu revealed greater bactericidal effects and prevented the biofilm formation better compared to antibiotic-loaded bone cement. The cement containing nanoAg displayed good cytocompatibility without noticeable hemolysis of erythrocytes or blood platelet disfunction and good viability of dental pulp stem cells (DPSC). On the contrary, the nanoCu cement enhanced hemolysis of erythrocytes, reduced the platelets aggregation, and decreased DPSC viability. Based on these studies, we suggest the modification of bone cement with nanoAg may be a good strategy to provide improved implant fixative for bone regeneration purposes

    The Creation of an Antimicrobial Coating on Contact Lenses by The Use of Nanocopper

    Full text link
    The aim of the research was to creation an antimicrobial coating on contact lens and examine the ability of copper nanoparticles to decrease microbial adhesion and prevent the growth of bacteria. The creation was based on the immersion method in solution with dispersed nanoparticles of copper at concentration 200 pm. There were evaluated follows factors: time of immersion and base to dispersed nanoparticles. Three solutions: ethyl alcohol 99.8%, lens liquid, and olive were tested and two variants of immersion, i.e.: double dipping for five seconds and immersion for a period of five minutes. The quality of the obtained coatings was controlled by using a biological microscope and a scanning electron microscope. Its effectiveness was tested by placing samples in the incubation medium of Staphylococcus aureus for 30 days

    Improving antibacterial activity of bone cement doped with nanosilver

    No full text

    The bactericidal degradation effectiveness of tannic acid-based thin films for wound care

    No full text

    The bactericidal degradation effectiveness of tannic acid-based thin films for wound care

    No full text

    Properties of New Composite Materials Based on Hydroxyapatite Ceramic and Cross-Linked Gelatin for Biomedical Applications

    No full text
    The main aim of the research was to develop a new biocompatible and injectable composite with the potential for application as a bone-to-implant bonding material or as a bone substitute. A composite based on hydroxyapatite, gelatin, and two various types of commercially available transglutaminase (TgBDF/TgSNF), as a cross-linking agent, was proposed. To evaluate the impacts of composite content and processing parameters on various properties of the material, the following research was performed: the morphology was examined by SEM microscopy, the chemical structure by FTIR spectroscopy, the degradation behavior was examined in simulated body fluid, the injectability test was performed using an automatic syringe pump, the mechanical properties using a nanoindentation technique, the surface wettability was examined by an optical tensiometer, and the cell viability was assayed by MTT and LDH. In all cases, a composite paste was successfully obtained. Injectability varied between 8 and 15 min. The type of transglutaminase did not significantly affect the surface topography or chemical composition. All samples demonstrated proper nanomechanical properties with Young鈥檚 modulus and the hardness close to the values of natural bone. BDF demonstrated better hydrophilic properties and structural stability over 7 days in comparison with SNF. In all cases, the transglutaminase did not lead to cell necrosis, but cellular proliferation was significantly inhibited, especially for the BDF agent

    Surgical Site Infection after Breast Surgery: A Retrospective Analysis of 5-Year Postoperative Data from a Single Center in Poland

    No full text
    Background and Objectives: Surgical site infection (SSI) is a significant complication of non-reconstructive and reconstructive breast surgery. This study aimed to assess SSI after breast surgery over five years in a single center in Poland. The microorganisms responsible for SSI and their antibiotic susceptibilities were determined. Materials and Methods: Data from 2129 patients acquired over five years postoperatively by the Department of Surgical Oncology, Medical University of Gdansk in Poland were analyzed. Results: SSI was diagnosed in 132 patients (6.2%) and was an early infection in most cases (65.2%). The incidence of SSI was highest in patients who underwent subcutaneous amputation with simultaneous reconstruction using an artificial prosthesis (14.6%), and breast reconstruction via the transverse rectus abdominis muscle (TRAM) flap method (14.3%). Gram-positive bacteria were responsible for SSI in most cases (72.1%), and these were mainly Staphylococcus strains (53.6%). These strains were 100% susceptible to all beta-lactam antibiotics (except penicillin) but were less susceptible to macrolides and lincosamides. Conclusions: SSI is a serious problem, and attention should be focused on its prevention. Reconstruction using an artificial prosthesis or via the TRAM flap method is connected to increased SSI incidence. Further studies are required to prevent SSI following breast surgery
    corecore