29 research outputs found

    A method to determine the displacement velocity field in the apical region of the Arabidopsis root

    Get PDF
    In angiosperms, growth of the root apex is determined by the quiescent centre. All tissues of the root proper and the root cap are derived from initial cells that surround this zone. The diversity of cell lineages originated from these initials suggests an interesting variation of the displacement velocity within the root apex. However, little is known about this variation, especially in the most apical region including the root cap. This paper shows a method of determination of velocity field for this region taking the Arabidopsis root apex as example. Assuming the symplastic growth without a rotation around the root axis, the method combines mathematical modelling and two types of empirical data: the published velocity profile along the root axis above the quiescent centre, and dimensions of cell packet originated from the initials of epidermis and lateral root cap. The velocities, calculated for points of the axial section, vary in length and direction. Their length increases with distance from the quiescent centre, in the root cap at least twice slower than in the root proper, if points at similar distance from the quiescent centre are compared. The vector orientation depends on the position of a calculation point, the widest range of angular changes, reaching almost 90, in the lateral root cap. It is demonstrated how the velocity field is related to both distribution of growth rates and growth-resulted deformation of the cell wall system. Also changes in the field due to cell pattern asymmetry and differences in slope of the velocity profile are modelled

    Persistent Symmetry Frustration in Pollen Tubes

    Get PDF
    Pollen tubes are extremely rapidly growing plant cells whose morphogenesis is determined by spatial gradients in the biochemical composition of the cell wall. We investigate the hypothesis (MP) that the distribution of the local mechanical properties of the wall, corresponding to the change of the radial symmetry along the axial direction, may lead to growth oscillations in pollen tubes. We claim that the experimentally observed oscillations originate from the symmetry change at the transition zone, where both intervening symmetries (cylindrical and spherical) meet. The characteristic oscillations between resonating symmetries at a given (constant) turgor pressure and a gradient of wall material constants may be identified with the observed growth-cycles in pollen tubes

    Resistivity of the (Gd1-xYx) in alloys as high temperatures two band model approach

    Get PDF
    Two-band model for the substitutionary binary alloy of different rare earth metals with relatively simple 4f multiplet structure placed within the transition metal host matrix was proposed and applied to (Gd1-xYx)2In. The main interaction which causes the magnetic part of the resistivity was assumed in a form of stochastically distributed in space s— f interaction. The calculated high temperature spin disorder resistivity of (Gdx1- Yx )2In alloys reproduces well the experimental alloys data

    Growing cell walls show a gradient of elastic strain across their layers

    Get PDF
    The relatively thick primary walls of epidermal and collenchyma cells often form waviness on the surface that faces the protoplast when they are released from the tensile in-plane stress that operates in situ. This waviness is a manifestation of buckling that results from the heterogeneity of the elastic strain across the wall. In this study, this heterogeneity was confirmed by the spontaneous bending of isolated wall fragments that were initially flat. We combined the empirical data on the formation of waviness in growing cell walls with computations of the buckled wall shapes. We chose cylindrical-shaped organs with a high degree of longitudinal tissue stress because in such organs the surface deformation that accompanies the removal of the stress is strongly anisotropic and leads to the formation of waviness in which wrinkles on the inner wall surface are always transverse to the organ axis. The computations showed that the strain heterogeneity results from individual or overlaid gradients of pre-stress and stiffness across the wall. The computed wall shapes depend on the assumed wall thickness and mechanical gradients. Thus, a quantitative analysis of the wall waviness that forms after stress removal can be used to assess the mechanical heterogeneity of the cell wall

    Topological traits of a cellular pattern versus growth rate anisotropy in radish roots

    Get PDF
    The topology of a cellular pattern, which means the spatial arrangement of cells, directly corresponds with cell packing, which is crucial for tissue and organ functioning. The topological features of cells that are typically analyzed are the number of their neighbors and the cell area. To date, the objects of most topological studies have been the growing cells of the surface tissues of plant and animal organs. Some of these researches also provide verification of Lewis’s Law concerning the linear correlation between the number of neighboring cells and the cell area. Our aim was to analyze the cellular topology and applicability of Lewis’s Lawto an anisotropically growing plant organ. The object of our study was the root apex of radish. Based on the tensor description of plant organ growth, we specified the level of anisotropy in specific zones (the root proper, the columella of the cap and the lateral parts of the cap) and in specific types of both external (epidermis) and internal tissues (stele and ground tissue) of the apex. The strongest anisotropy occurred in the root proper, while both zones of the cap showed an intermediate level of anisotropy of growth. Some differences in the topology of the cellular pattern in the zones were also detected; in the root proper, six-sided cells predominated, while in the root cap columella and in the lateral parts of the cap, most cells had five neighbors. The correlation coefficient rL between the number of neighboring cells and the cell area was high in the apex as a whole as well as in all of the zones except the root proper and in all of the tissue types except the ground tissue. In general, Lewis’s Law was fulfilled in the anisotropically growing radish root apex. However, the level of the applicability (rL value) of Lewis’s Lawwas negatively correlated with the level of the anisotropy of growth, which may suggest that in plant organs in the regions of anisotropic growth, the number of neighboring cells is less dependent on the cell size

    A method to determine the displacement velocity field in the apical region of the Arabidopsis root

    Get PDF
    In angiosperms, growth of the root apex is determined by the quiescent centre. All tissues of the root proper and the root cap are derived from initial cells that surround this zone. The diversity of cell lineages originated from these initials suggests an interesting variation of the displacement velocity within the root apex. However, little is known about this variation, especially in the most apical region including the root cap. This paper shows a method of determination of velocity field for this region taking the Arabidopsis root apex as example. Assuming the symplastic growth without a rotation around the root axis, the method combines mathematical modelling and two types of empirical data: the published velocity profile along the root axis above the quiescent centre, and dimensions of cell packet originated from the initials of epidermis and lateral root cap. The velocities, calculated for points of the axial section, vary in length and direction. Their length increases with distance from the quiescent centre, in the root cap at least twice slower than in the root proper, if points at similar distance from the quiescent centre are compared. The vector orientation depends on the position of a calculation point, the widest range of angular changes, reaching almost 90°, in the lateral root cap. It is demonstrated how the velocity field is related to both distribution of growth rates and growth-resulted deformation of the cell wall system. Also changes in the field due to cell pattern asymmetry and differences in slope of the velocity profile are modelled. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s00425-012-1707-x) contains supplementary material, which is available to authorized users

    Spatial and Directional Variation of Growth Rates in <i>Arabidopsis</i> Root Apex: A Modelling Study

    Get PDF
    <div><p>Growth and cellular organization of the <i>Arabidopsis</i> root apex are investigated in various aspects, but still little is known about spatial and directional variation of growth rates in very apical part of the apex, especially in 3D. The present paper aims to fill this gap with the aid of a computer modelling based on the growth tensor method. The root apex with a typical shape and cellular pattern is considered. Previously, on the basis of two types of empirical data: the published velocity profile along the root axis and dimensions of cell packets formed in the lateral part of the root cap, the displacement velocity field for the root apex was determined. Here this field is adopted to calculate the linear growth rate in different points and directions. The results are interpreted taking principal growth directions into account. The root apex manifests a significant anisotropy of the linear growth rate. The directional preferences depend on a position within the root apex. In the root proper the rate in the periclinal direction predominates everywhere, while in the root cap the predominating direction varies with distance from the quiescent centre. The rhizodermis is distinguished from the neighbouring tissues (cortex, root cap) by relatively high contribution of the growth rate in the anticlinal direction. The degree of growth anisotropy calculated for planes defined by principal growth directions and exemplary cell walls may be as high as 25. The changes in the growth rate variation are modelled. </p> </div

    Anisotropy of growth rates in <i>Arabidopsis</i> root apex obtained for V field from Figure 3.

    No full text
    <p>The 3D plots show R<sub>l</sub> indicatrices; those drawn in red are for initial cells (see Fig.2). In the indicatrix labelled by circle maximal R<sub>l</sub> is about 8.2% h<sup>-1</sup>. The green plots represent negative values of the rate.</p

    The R<sub>l</sub> indicatrices representing various growth at a point: isotropic (A) and anisotropic (B-D): (B) symmetry with respect to <i>y</i>, i.e. the R<sub>l</sub> along each direction in <i>xz</i> plane is the same, (C) pure elongation along <i>z</i>, i.e. there is no growth in <i>xy</i> plane, (D) elongation along <i>z</i> with contraction (green) along <i>x</i>.

    No full text
    <p>The scheme on the left shows deformation of the exemplary cell resulting from each growth. In every case R<sub>l</sub> in a considered direction is proportional to the distance from the calculation point to the indicatrix surface along this direction; the growth rate along <i>z</i> axis is always the same.</p
    corecore