83 research outputs found

    Conformational states of annexin VI in solution induced by acidic pH

    Get PDF
    AbstractAcidic pH-induced folding of annexin (Anx)VI in solution was investigated in order to study the mechanism of formation of ion channels by the protein in membranes. Using 2-(p-toluidino)naphthalene-6-sulfonic acid as a hydrophobic probe, it was demonstrated that AnxVI exerts a large change in hydrophobicity at acidic pH. Moreover, circular dichroism spectra indicated that the native state of AnxVI changes at acidic pH towards a state characterized by a significant loss of α-helix content and appearance of new β-structures. These changes are reversible upon an increase of pH. It is postulated that the structural folding of AnxVI could explain how a soluble protein may undergo transition into a molecule able to penetrate the membrane hydrophobic region. The physiological significance of these observations is discussed

    Increasing energetic demands on photoreceptors in diabetes corrects retinal lipid dysmetabolism and reduces subsequent microvascular damage

    Get PDF
    Mechanisms responsible for the pathogenesis of diabetic retinal disease remain incompletely understood, but they likely involve multiple cellular targets, including photoreceptors. Evidence suggests that dysregulated de novo lipogenesis in photoreceptors is a critical early target of diabetes. Following on this observation, the present study aimed to determine whether two interventions shown to improve diabetic retinopathy in mice-pharmacologic visual cycle inhibition and prolonged dark adaptation-reduce photoreceptor anabolic lipid metabolism. Elevated retinal lipid biosynthetic signaling was observed in two mouse models of diabetes, with both models showing reduced retinal AMP-activated kinase (AMPK) signaling, elevated acetyl CoA carboxylase (ACC) signaling, and increased activity of fatty acid synthase, which promotes lipotoxicity in photoreceptors. Although retinal AMPK-ACC axis signaling was dependent on systemic glucose fluctuations in healthy animals, mice with diabetes lacked such regulation. Visual cycle inhibition and prolonged dark adaptation reversed abnormal retinal AMPK-ACC signaling in mice with diabetes. Although visual cycle inhibition reduced the severity of diabetic retinopathy in control mice, as assessed by retinal capillary atrophy, this intervention was ineffective in fatty acid synthase gain-of-function mice. These results suggest that early diabetic retinopathy is characterized by glucose-driven elevations in retinal lipid biosynthetic activity, and that two interventions known to increase photoreceptor glucose demands alleviate disease by reversing these signals

    Regulation of DJ-1 by glutaredoxin 1 \u3ci\u3ein vivo – implications for Parkinson’s disease\u3c/i\u3e

    Get PDF
    Parkinson’s disease (PD) is the second most common neurodegenerative disease worldwide, caused by the degeneration of the dopaminergic neurons in the substantia nigra. Mutations in PARK7 (DJ-1) result in early onset autosomal recessive PD, and oxidative modification of DJ-1 has been reported to regulate the protective activity of DJ-1 in vitro. Glutathionylation is a prevalent redox modification of proteins resulting from the disulfide adduction of the glutathione moiety to a reactive cysteine-SH; and glutathionylation of specific proteins has been implicated in regulation of cell viability. Glutaredoxin 1 (Grx1) is the principal deglutathionylating enzyme within cells, and it has been reported to mediate protection of dopaminergic neurons in C. elegans, however many of the functional downstream targets of Grx1 in vivo remain unknown. Previously, DJ-1 protein content was shown to decrease concomitantly with diminution of Grx1 protein content in cell culture of model neurons (SH-SY5Y and Neuro-2A lines). In the current study we aimed to investigate the regulation of DJ-1 by Grx1 in vivo and characterize its glutathionylation in vitro. Here, with Grx−/− mice we provide evidence that Grx1 regulates protein levels of DJ-1 in vivo. Furthermore, with model neuronal cells (SH-SY5Y) we observed decreased DJ-1 protein content in response to treatment with known glutathionylating agents; and with isolated DJ-1 we identified two distinct sites of glutathionylation. Finally, we found that overexpression of DJ-1 in the dopaminergic neurons partly compensates for the loss of the Grx1 homolog in a C. elegans in vivo model of PD. Therefore; our results reveal a novel redox modification of DJ-1 and suggest a novel regulatory mechanism for DJ-1 content in vivo

    Isolation and functional characterization of a stable complex between photoactivated rhodopsin and the G protein, transducin

    No full text
    Transitory binding between photoactivated rhodopsin (Rho* or Meta II) and the G protein transducin (Gt-GDP) is the first step in the visual signaling cascade. Light causes photoisomerization of the 11-cis-retinylidene chromophore in rhodopsin (Rho) to all-trans-retinylidene, which induces conformational changes that allow Gt-GDP to dock onto the Rho* surface. GDP then dissociates from Gt, leaving a transient nucleotide-empty Rho*-Gte complex before GTP becomes bound, and Gt-GTP then dissociates from Rho*. Further biochemical advances are required before structural studies of the various Rho*-Gt complexes can be initiated. Here, we describe the isolation of n-dodecyl-β-maltoside solubilized, stable, functionally active, Rho*-Gte, Rhoe*-Gte, and 9-cis-retinal/11-cis-retinal regenerated Rho-Gte complexes by sucrose gradient centrifugation. In these complexes, Rho* spectrally remained in its Meta II state, and Gte retained its ability to interact with GTPγS. Removal of all-trans-retinylidene from Rho*-Gte had no effect on the stability of the Rhoe*-Gte complex. Moreover, opsin in the Rhoe*-Gte complex with an empty nucleotide-binding pocket in Gt and an empty retinoid-binding pocket in Rho was regenerated up to 75% without complex dissociation. These results indicate that once Rho* couples with Gt, the chromophore plays a minor role in stabilizing this complex. Moreover, in complexes regenerated with 9-cis-retinal/11-cis-retinal, Rho retains a conformation similar to Rho* that is stabilized by Gte apo-protein.—Jastrzebska, B., Golczak, M., Fotiadis, D., Engel, A., and Palczewski, K.. Isolation and functional characterization of a stable complex between photoactivated rhodopsin and the G protein, transducin

    GTP-binding properties of the membrane-bound form of porcine liver annexin VI.

    No full text
    Annexin VI (AnxVI) of molecular mass 68-70 kDa belongs to a multigenic family of ubiquitous Ca2+ - and phospholipid-binding proteins. In this report, we describe the GTP-binding properties of porcine liver AnxVI, determined with a fluorescent GTP analogue, 2'-(or 3')-O-(2,4,6-trinitrophenyl)guanosine 5'-triphosphate (TNP-GTP). The optimal binding of TNP-GTP to AnxVI was observed in the presence of Ca2+ and asolectin liposomes, as evidenced by a 5.5-fold increase of TNP-GTP fluorescence and a concomitant blue shift (by 17 nm) of its maximal emission wavelength. Titration of AnxVI with TNP-GTP resulted in the determination of the dissociation constant (Kd) and binding stoichiometry that amounted to 1.3 μM and 1:1 TNP-GTP/AnxVI, mole/mole, respectively. In addition, the intrinsic fluorescence of the membrane-bound form of AnxVI was quenched by TNP-GTP and this was accompanied by fluorescence resonance energy transfer (FRET) from AnxVI Trp residues to TNP-GTP. This indicates that the GTP-binding site within the AnxVI molecule is probably located in the vicinity of a Trp-containing domain of the protein. By controlled proteolysis of human recombinant AnxVI, followed by purification of the proteolytic fragments by affinity chromatography on GTP-agarose, we isolated a 35 kDa fragment corresponding to the N-terminal half of AnxVI containing Trp192. On the basis of these results, we suggest that AnxVI is a GTP-binding protein and the binding of the nucleotide may have a regulatory impact on the interaction of annexin with membranes, e.g. formation of ion channels by the protein
    • …
    corecore