55 research outputs found

    Dynamical chiral symmetry breaking and confinement with an infrared-vanishing gluon propagator?

    Full text link
    We study a model Dyson-Schwinger equation for the quark propagator closed using an {\it Ansatz} for the gluon propagator of the form \mbox{D(q)q2/[(q2)2+b4]D(q) \sim q^2/[(q^2)^2 + b^4]} and two {\it Ans\"{a}tze} for the quark-gluon vertex: the minimal Ball-Chiu and the modified form suggested by Curtis and Pennington. Using the quark condensate as an order parameter, we find that there is a critical value of b=bcb=b_c such that the model does not support dynamical chiral symmetry breaking for b>bcb>b_c. We discuss and apply a confinement test which suggests that, for all values of bb, the quark propagator in the model {\bf is not} confining. Together these results suggest that this Ansatz for the gluon propagator is inadequate as a model since it does not yield the expected behaviour of QCD.Comment: 21 Pages including 4 PostScript figures uuencoded at the end of the file. Replacement: slight changes of wording and emphasis. ADP-93-215/T133, ANL-PHY-7599-TH-93, FSU-SCRI-93-108, REVTEX 3.

    Asymptotic Scaling and Infrared Behavior of the Gluon Propagator

    Get PDF
    The Landau gauge gluon propagator for the pure gauge theory is evaluated on a 32^3x64 lattice with a physical volume of (3.35^3x6.7)fm^4. Comparison with two smaller lattices at different lattice spacings allows an assessment of finite volume and finite lattice spacing errors. Cuts on the data are imposed to minimize these errors. Scaling of the gluon propagator is verified between beta=6.0 and beta=6.2. The tensor structure is evaluated and found to be in good agreement with the Landau gauge form, except at very small momentum values, where some small finite volume errors persist. A number of functional forms for the momentum dependence of the propagator are investigated. The form D(q^2)=D_ir+D_uv, where D_ir(q^2) ~ (q^2+M^2)^-\eta and D_uv is an infrared regulated one-loop asymptotic form, is found to provide an adequate description of the data over the entire momentum region studied - thereby bridging the gap between the infrared confinement region and the ultraviolet asymptotic region. The best estimate for the exponent \eta is 3.2(+0.1/-0.2)(+0.2/-0.3), where the first set of errors represents the uncertainty associated with varying the fitting range, while the second set of errors reflects the variation arising from different choices of infrared regulator in D_uv. Fixing the form of D_uv, we find that the mass parameter M is (1020+/-100)MeV.Comment: 37 pages, RevTeX, 16 postscript figures, 7 gif figures. Revised version accepted for publication in Phys. Rev. D. Model functions and discussion of asymptotic behaviour modified; all model fits have been redone. This paper, including postscript version of all figures, can be found at http://www.physics.adelaide.edu.au/~jskuller/papers

    Closing the Light Gluino Window in Supersymmetric Grand Unified Models

    Full text link
    We study the light gluino scenario giving special attention to constraints from the masses of the light CP-even neutral Higgs mhm_h, the lightest chargino mχ1±m_{\chi^{\pm}_1}, and the second lightest neutralino mχ20m_{\chi^0_2}, and from the bsγb\rightarrow s\gamma decay. We find that minimal N=1N=1 supergravity, with a radiatively broken electroweak symmetry group and universality of scalar and gaugino masses at the unification scale, is incompatible with the existence of a light gluino.Comment: 12 pages (plain tex), 1 figure not included, VAND-TH-94-7-R. An error is corrected. Modifications to the text and the figure are mad

    The Standard Model Prediction of the Muon Anomalous Magnetic Moment

    Full text link
    This article reviews and updates the Standard Model prediction of the muon g-2. QED, electroweak and hadronic contributions are presented, and open questions discussed. The theoretical prediction deviates from the present experimental value by 2-3 standard deviations, if e+e- annihilation data are used to evaluate the leading hadronic term.Comment: 30 pages, 8 figures. v2: Updated version to appear in J.Phys.G. Comments and references added, typo corrected in eq.(17

    The Physics of Hadronic Tau Decays

    Full text link
    Hadronic tau decays represent a clean laboratory for the precise study of quantum chromodynamics (QCD). Observables (sum rules) based on the spectral functions of hadronic tau decays can be related to QCD quark-level calculations to determine fundamental quantities like the strong coupling constant, parameters of the chiral Lagrangian, |V_us|, the mass of the strange quark, and to simultaneously test the concept of quark-hadron duality. Using the best available measurements and a revisited analysis of the theoretical framework, the value alpha_s(m_tau) = 0.345 +- 0.004[exp] +- 0.009[theo] is obtained. Taken together with the determination of alpha_s(m_Z) from the global electroweak fit, this result leads to the most accurate test of asymptotic freedom: the value of the logarithmic slope of 1/alpha_s(s) is found to agree with QCD at a precision of 4%. In another approach, the tau spectral functions can be used to determine hadronic quantities that, due to the nonperturbative nature of long-distance QCD, cannot be computed from first principles. An example for this is the contribution from hadronic vacuum polarization to loop-dominated processes like the anomalous magnetic moment of the muon. This article reviews the measurements of nonstrange and strange tau spectral functions and their phenomenological applications.Comment: 89 pages, 32 figures; final version accepted for publication by Reviews of Modern Physic

    Search for Baryon and Lepton Number Violating Decays of the τ\tau Lepton

    Get PDF
    We have searched for five decay modes of the tau lepton that simultaneously violate lepton and baryon number: tau -> anti-proton gamma, tau -> anti-proton pi0, tau -> anti-proton eta, tau -> anti-proton 2pi0, and tau -> anti-proton pi0eta. The data used in the search were collected with the CLEO II detector at the Cornell Electron Storage Ring (CESR). The integrated luminosity of the data sample is 4.7 fb^{-1}, corresponding to the production of 4.3 x 10^6 tau+tau- events. No evidence is found for any of the decays, resulting in much improved upper limits on the branching fractions for the two-body decays and first upper limits for the three-body decays.Comment: 8 pages, postscript file also available through http://w4.lns.cornell.edu/public/CLN

    The Muon Magnetic Moment and Supersymmetry

    Get PDF
    The present review is devoted to the muon magnetic moment and its role in supersymmetry phenomenology. Analytical results for the leading supersymmetric one- and two-loop contributions are provided, numerical examples are given and the dominant tan(beta)sign(mu)/M_SUSY^2 behaviour is qualitatively explained. The consequences of the Brookhaven measurement are discussed. The 2 sigma deviation from the Standard Model prediction implies preferred ranges for supersymmetry parameters, in particular upper and lower mass bounds. Correlations with other observables from collider physics and cosmology are reviewed. We give, wherever possible, an intuitive understanding of each result before providing a detailed discussion.Comment: Topical Review; 54 pages, 18 figure
    corecore