2,615 research outputs found

    Electroweak Radiative Corrections To Polarized M{\o}ller Scattering Asymmetries

    Get PDF
    One loop electroweak radiative corrections to left-right parity violating M{\o}ller scattering (eeeee^-e^-\to e^-e^-) asymmetries are presented. They reduce the standard model (tree level) prediction by 40±3\pm 3 \% where the main shift and uncertainty stem from hadronic vacuum polarization loops. A similar reduction also occurs for the electron-electron atomic parity violating interaction. That effect can be attributed to an increase of sin2θW(q2)\sin^2\theta_W(q^2) by 3%3\% in running from q2=mZ2q^2=m_Z^2 to 0. The sensitivity of the asymmetry to ``new physics'' is also discussed.Comment: 14 pages, Revtex, postscript file including figures is available at ftp://ttpux2.physik.uni-karlsruhe.de/ttp95-14/ttp95-14.ps or via WWW at http://ttpux2.physik.uni-karlsruhe.de/cgi-bin/preprints/ (129.13.102.139

    Muon Anomaly and Dark Parity Violation

    Full text link
    The muon anomalous magnetic moment exhibits a 3.6 \sigma discrepancy between experiment and theory. One explanation requires the existence of a light vector boson, Z_d (the dark Z), with mass 10 - 500 MeV that couples weakly to the electromagnetic current through kinetic mixing. Support for such a solution also comes from astrophysics conjectures regarding the utility of a U(1)_d gauge symmetry in the dark matter sector. In that scenario, we show that mass mixing between the Z_d and ordinary Z boson introduces a new source of "dark" parity violation which is potentially observable in atomic and polarized electron scattering experiments. Restrictive bounds on the mixing (m_{Z_d} / m_Z) \delta are found from existing atomic parity violation results, \delta^2 < 2 x 10^{-5}. Combined with future planned and proposed polarized electron scattering experiments, a sensitivity of \delta^2 ~ 10^{-6} is expected to be reached, thereby complementing direct searches for the Z_d boson.Comment: Version to appear in PR

    "Dark" Z implications for Parity Violation, Rare Meson Decays, and Higgs Physics

    Full text link
    General consequences of mass mixing between the ordinary Z boson and a relatively light Z_d boson, the "dark" Z, arising from a U(1)_d gauge symmetry, associated with a hidden sector such as dark matter, are examined. New effects beyond kinetic mixing are emphasized. Z-Z_d mixing introduces a new source of low energy parity violation well explored by possible future atomic parity violation and planned polarized electron scattering experiments. Rare K (B) meson decays into pi (K) l^+ l^- (l = e, mu) and pi (K) nu anti-nu are found to already place tight constraints on the size of Z-Z_d mixing. Those sensitivities can be further improved with future dedicated searches at K and B factories as well as binned studies of existing data. Z-Z_d mixing can also lead to the Higgs decay H -> Z Z_d, followed by Z -> l_1^+ l_1^- and Z_d -> l_2^+ l_2^- or "missing energy", providing a potential hidden sector discovery channel at the LHC. An illustrative realization of these effects in a 2 Higgs doublet model is presented.Comment: Version to appear in PR

    Identification of Naegleria fowleri proteins linked to primary amoebic meningoencephalitis

    Get PDF
    Naegleria fowleri (N. fowleri) causes primary amoebic meningoencephalitis, a rapidly fatal disease of the central nervous system. N. fowleri can exist in cyst, flagellate or amoebic forms, depending on environmental conditions. The amoebic form can invade the brain following introduction into the nasal passages. When applied intranasally to a mouse model, cultured N. fowleri amoebae exhibit low virulence. However, upon serial passage in mouse brain, the amoebae acquire a highly virulent state. In the present study, a proteomics approach was applied to the identification of N. fowleri amoeba proteins whose expression was associated with the highly virulent state in mice. Mice were inoculated intranasally with axenically cultured amoebae or with mouse-passaged amoebae. Examination by light and electron microscopy revealed no morphological differences. However, mouse-passaged amoebae were more virulent in mice as indicated by exhibiting a two log10 titre decrease in median infective dose 50 (ID50). Scatter plot analysis of amoebic lysates revealed a subset of proteins, the expression of which was associated with highly virulent amoebae. MS-MS indicated that this subset contained proteins that shared homology with those linked to cytoskeletal rearrangement and the invasion process. Invasion assays were performed in the presence of a select inhibitor to expand on the findings. The collective results suggest that N. fowleri gene products linked to cytoskeletal rearrangement and invasion may be candidate targets in the management of primary amoebic meningoencephalitis
    corecore