3 research outputs found

    Highly sensitive <sup>26</sup>Al measurements by Ion-Laser-InterAction Mass Spectrometry

    No full text
    The method of Ion-Laser InterAction Mass Spectrometry (ILIAMS) offers new options for the determination of 26Al by Accelerator Mass Spectrometry (AMS) and improves the sensitivity and efficiency for the detection of this isotope in artificial and environmental samples. In ILIAMS, a laser is overlapped with the ion beam during its passage through a radiofrequency quadrupole ion cooler. Those ions with electron affinity lower than the energy of the photons are selectively neutralized in a photodetachment process.Because the electron affinity of MgO is lower than that of AlO, ILIAMS can suppress the isobar 26Mg by 14 orders of magnitude. No further isobar suppression on the high-energy side of the spectrometer is necessary, so that the more prolific AlO− beam can now also be used at facilities with terminal voltages At the 3 MV Vienna Environmental Research Accelerator (VERA) routine 26Al AMS measurements assisted by ILIAMS are performed utilizing AlO− extracted from the ion source and charge states 2+ and 3+ for the Al ions after the accelerator on the high-energy side of the spectrometer. The most efficient generation of AlO− currents (in the range of several μA) is realized when mixing the Al2O3 sample material with Fe powder. Blank materials are measured down to 26Al/27Al ratios of 5⋅10−16. The efficiency relative to the use of Al− extraction is improved typically by a factor 3-5 and thus the new method is useful for measurements with highest sensitivity and down to very low 26Al/27Al ratios.</div

    The anomalous polymict ordinary chondrite breccia of Elmshorn (H3‐6)—Late reaccretion after collision between two ordinary chondrite parent bodies, complete disruption, and mixing possibly about 2.8 Gyr ago

    No full text
    Elmshorn fell April 25, 2023, about 30 km northwest of the city of Hamburg (Germany). Shortly after the fall, 21 pieces were recovered totaling a mass of 4277 g. Elmshorn is a polymict and anomalous H3‐6 chondritic, fragmental breccia. The rock is a mixture of typical H chondrite lithologies and clasts of intermediate H/L (or L, based on magnetic properties) chondrite origin. In some of the 21 pieces, the H chondrite lithologies dominate, while in others the H/L (or L) chondrite components are prevalent. The H/L chondrite assignment of these components is based on the mean composition of their olivines in equilibrated type 4 fragments (~Fa21–22). The physical properties like density (3.34 g cm−3) and magnetic susceptibility (logχ <5.0, with χ in 10−9 m3 kg−1) are typical for L chondrites, which is inconsistent with the oxygen isotope compositions: all eight O isotope analyses from two different fragments clearly fall into the H chondrite field. Thus, the fragments found in the strewn field vary in mineralogy, mineral chemistry, and physical properties but not in O isotope characteristics. The sample most intensively studied belongs to the stones dominated by H chondrite lithologies. The chemical composition and nucleosynthetic Cr and Ti isotope data are typical for ordinary chondrites. The noble gases in Elmshorn represent a mixture between cosmogenic, radiogenic, and primordially trapped noble gases, while a solar wind component can be excluded. Because the chondritic rock of Elmshorn contains (a) H chondrite parent body interior materials (of types 5 and 6), (b) chondrite parent body near‐surface materials (of types 3 and 4), (c) fragments of an H/L chondrite (dominant in many stones), (d) shock‐darkened fragments, and (e) clasts of various types of impact melts but no solar wind‐implanted noble gases, the different components cannot have been part of a parent body regolith. The most straightforward explanation is that the fragmental breccia of Elmshorn represents a reaccreted rock after a catastrophic collision between an H chondrite parent body and another body with H/L (or L) chondrite characteristics but with deviating O isotope values (i.e. that of H chondrites), complete disruption of the bodies, mixing, and reassembly. This is the only straightforward way that the implantation of solar wind gases could have been avoided in this kind of complex breccia. The gas retention ages of about 2.8 Gyr possibly indicate the closure time after the catastrophic collision between H and H/L (or L) chondrite parent bodies, while the cosmic ray exposure age for Elmshorn, which had a preatmospheric radius of 25–40 cm, is ~17–20 Myr

    Cosmic pears from the Havelland (Germany): Ribbeck, the twelfth recorded aubrite fall in history

    No full text
    International audienceAbstract In 1889 the German poet and novelist Theodor Fontane wrote the popular literary ballad “Herr von Ribbeck auf Ribbeck im Havelland.” The Squire von Ribbeck is described as a gentle and generous person, who often gives away pears from his pear trees to children passing by and continued donating pears after his death. Now, 135 years later the rock called Ribbeck is giving us insight into processes that happened 4.5 billion years ago. The meteorite Ribbeck (official find location: 52°37′15″N, 12°45′40″E) fell January 21, 2024, and has been classified as a brecciated aubrite. This meteoroid actually entered the Earth's atmosphere at 00:32:38 UTC over Brandenburg, west of Berlin, and the corresponding fireball was recorded by professional all sky and video cameras. More than 200 pieces (two proved by radionuclide analysis to belong to this fresh fall) were recovered totaling about 1.8 kg. Long‐lived radionuclide and noble gas data are consistent with long cosmic ray exposure (55–62 Ma) and a preatmospheric radius of Ribbeck between 20 and 30 cm. The heavily brecciated aubrite consists of major (76 ± 3 vol%) coarse‐grained FeO‐free enstatite (En 99.1 Fs &lt;0.04 Wo 0.9 ), with a significant abundance (15.0 ± 2.5 vol%) of albitic plagioclase (Ab 95.3 An 2.0 Or 2.7 ), minor forsterite (5.5 ± 1.5 vol%; Fo 99.9 ) and 3.5 ± 1.0 vol% of opaque phases (mainly sulfides and metals) with traces of nearly FeO‐free diopside (En 53.2 Wo 46.8 ) and K‐feldspar (Ab 4.6 Or 95.4 ). The rock has a shock degree of S3 (U‐S3), and terrestrial weathering has affected metals and sulfides, resulting in the brownish appearance of rock pieces and the partial destruction of certain sulfides already within days after the fall. The bulk chemical data confirm the feldspar‐bearing aubritic composition. Ribbeck is closely related to the aubrite Bishopville. Ribbeck does not contain solar wind implanted gases and is a fragmental breccia. Concerning the Ti‐ and O‐isotope compositions, the data are similar to those of other aubrites. They are also similar to E chondrites and fall close to the data point for the bulk silicate Earth (BSE). Before the Ribbeck meteoroid entered Earth's atmosphere, it was observed in space as asteroid 2024 BX1. The aphelion distance of 2024 BX1's orbit lies in the innermost region of the asteroid belt, which is populated by the Hungaria family of minor planets characterized by their E/X‐type taxonomy and considered as the likely source of aubrites. The spectral comparison of an average large‐scale emission spectrum of Mercury converted into reflectance and of the Ribbeck meteorite spectrum does not show any meaningful similarities
    corecore