377 research outputs found

    Diketopiperazine gels: New horizons from the self-assembly of cyclic dipeptides

    Get PDF
    Cyclodipeptides (CDPs) or 2, 5-diketopiperazines (DKPs) can exert a variety of biological activities and display pronounced resistance against enzymatic hydrolysis as well as a propensity towards self-assembly into gels, relative to the linear-dipeptide counterparts. They have attracted great interest in a variety of fields spanning from functional materials to drug discovery. This concise review will analyze the latest advancements in their synthesis, self-assembly into gels, and their more innovative applications

    Nanomaterials for stimulating nerve growth

    Get PDF
    Despite recent advances in supportive care for spinal cord injury (SCI), there is a great need for treatments that can improve the neurological outcome (1). After SCI, there is essentially no regrowth of axons beyond the point of the lesion, leaving intact, although nonfunctional, circuits below the site of injury. We discuss the potential for functional recovery from SCI by using nanomaterials to restore these dysfunctional circuits through a combination of artificial connections and devices to help stimulate motor and sensory recovery

    Ion Channels and Transporters as Therapeutic Agents: From Biomolecules to Supramolecular Medicinal Chemistry

    Get PDF
    Ion channels and transporters typically consist of biomolecules that play key roles in a large variety of physiological and pathological processes. Traditional therapies include many ionchannel blockers, and some activators, although the exact biochemical pathways and mechanisms that regulate ion homeostasis are yet to be fully elucidated. An emerging area of research with great innovative potential in biomedicine pertains the design and development of synthetic ion channels and transporters, which may provide unexplored therapeutic opportunities. However, most studies in this challenging and multidisciplinary area are still at a fundamental level. In this review, we discuss the progress that has been made over the last five years on ion channels and transporters, touching upon biomolecules and synthetic supramolecules that are relevant to biological use. We conclude with the identification of therapeutic opportunities for future exploratio

    Carbon nanotubes and catalysis: the many facets of a successful marriage

    Get PDF
    Carbon nanotubes have emerged as unique carbon allotropes that bear very interesting prospects in catalysis. Their use is mostly related to that of supports for inorganic metal catalysts, including molecular catalysts, metal nanoparticles, metal oxides or even more complex hierarchical hybrids. However, several reports have shown that they can intriguingly act as metal-free catalysts, with performance often superior to that of other carbon materials, in particular when ad hoc organic functional groups are attached prior to catalytic screening. The range of catalytic reactions is quite wide, and it includes standard organic synthesis, electrocatalysis, photocatalysis as well as other important industrial processes. In the last few years, the energy sector has acquired a dominant role as one of the most sought-after fields of application, given its ever-increasing importance in society

    Higher and lower supramolecular orders for the design of self-assembled heterochiral tripeptide hydrogel biomaterials

    Get PDF
    The self-assembly behaviour of the eight stereoisomers of Val\u2013Phe\u2013Phe tripeptides under physiological conditions is assessed by several spectroscopy and microscopy techniques. We report the first examples of self-organised hydrogels from tripeptides in the L\u2013D\u2013L or D\u2013L\u2013D configuration, besides the expected gels with the D\u2013L\u2013L or L\u2013D\u2013D configuration, thus widening the scope for using amino acid chirality as a tool to drive self-assembly. Importantly, the positions of D- and L-amino acids in the gelling tripeptides determine a higher or lower supramolecular order, which translates into macroscopic gels with different rheological properties and thermal behaviours. The more durable hydrogels perform well in cytotoxicity assays, and also as peptides in solution. An appropriate design of the chirality of self-assembling sequences thus allows for the fine-tuning of the properties of the gel biomaterials. In conclusion, this study adds key details of supramolecular organization that will assist in the ex novo design of assembling chiral small molecules for their use as biomaterials

    Ganho genético em potencial produtivo do arroz irrigado no Rio Grande do Sul, após o lançamento da cultivar BR-IRGA 409.

    Get PDF
    Este trabalho teve como objetivo estimar os ganhos genéticos em rendimento de grãos nos últimos 30 anos, ou a partir do lançamento da cultivar BR-IRGA 409, no estado do Rio Grande do Sul, com base no desempenho de cultivares representativas lançadas pela pesquisa

    Design of a hydrophobic tripeptide that self-assembles into amphiphilic superstructures forming a hydrogel biomaterial

    Get PDF
    We report the rational design of a heterochiral hydrophobic tripeptide self-assembling into amphiphilic D-superstructures that yield a self-supportive hydrogel at physiological pH. The material endures cell culture conditions and sustains fibroblast proliferation. Tripeptide superstructures are thoroughly analysed by several techniques

    Driving up the Electrocatalytic Performance for Carbon Dioxide Conversion through Interface Tuning in Graphene Oxide-Bismuth Oxide Nanocomposites

    Get PDF
    The integration of graphene oxide (GO) into nanostructured Bi2O3 electrocatalysts for CO2 reduction (CO2RR) brings up remarkable improvements in terms of performance toward formic acid (HCOOH) production. The GO scaffold is able to facilitate electron transfers toward the active Bi2O3 phase, amending for the high metal oxide (MO) intrinsic electric resistance, resulting in activation of the CO2 with smaller overpotential. Herein, the structure of the GO-MO nanocomposite is tailored according to two synthetic protocols, giving rise to two different nanostructures, one featuring reduced GO (rGO) supporting Bi@Bi2O3 core–shell nanoparticles (NP) and the other GO supporting fully oxidized Bi2O3 NP. The two structures differentiate in terms of electrocatalytic behavior, suggesting the importance of constructing a suitable interface between the nanocarbon and the MO, as well as between MO and metal

    Asymmetric Organocatalysis Accelerated via Self-Assembled Minimal Structures

    Get PDF
    Self-assembling minimalistic peptides embedded with an organocatalytic moiety were designed. By controlling the formation of fibrils via external intervention, it was shown that the activation is accelerated when the organocatalyst is in its supramolecular state. The effect of the accelerated catalysis was demonstrated in a Michael benchmark reaction
    • …
    corecore