184 research outputs found

    Thermodynamics of a Heavy Ion-Irradiated Superconductor: the Zero-Field Transition

    Full text link
    Specific heat measurements show that the introduction of amorphous columnar defects considerably affects the transition from the normal to the superconducting state in zero magnetic field. Experimental results are compared to numerical simulations of the 3D XY model for both the pure system and the system containing random columnar disorder. The numerics reproduce the salient features of experiment, showing in particular that the specific heat peak changes from cusp-like to smoothly rounded when columnar defects are added. By considering the specific heat critical exponent alpha, we argue that such behavior is consistent with recent numerical work [Vestergren et al., PRB 70, 054508 (2004)] showing that the introduction of columnar defects changes the universality class of the transition.Comment: 4 pages, 2 figure

    Anomalous charge transport in dodecaborides RB12 (R- Ho, Er, Tm, Lu)

    Full text link
    High precision measurements of Hall RH(T) and Seebeck S(T) coefficients have been carried out for the first time on single crystals of rare earth dodecaborides RB12 (R - Ho, Er, Tm, Lu) at temperatures 1.8 - 300K. Low temperature anomalies associated with antiferromagnetic phase transitions in HoB12, ErB12 and TmB12 compounds have been detected on the temperature dependencies of RH(T) and S(T). The estimated values of charge carriers mobility allowed us to conclude about the appreciable influence of spin fluctuations on the charge transport in these compounds with B12 atomic clusters

    Tunneling Spectroscopy and Vortex Imaging in Boron-Doped Diamond

    Get PDF
    We present the first scanning tunneling spectroscopy study of single-crystalline boron doped diamond. The measurements were performed below 100 mK with a low temperature scanning tunneling microscope. The tunneling density of states displays a clear superconducting gap. The temperature evolution of the order parameter follows the weak coupling BCS law with Δ(0)/kBTc1.74\Delta(0)/k_B T_c \simeq 1.74. Vortex imaging at low magnetic field also reveals localized states inside the vortex core that are unexpected for such a dirty superconductor.Comment: 4 pages, 4 figures, replaced with revised versio

    Comment on "Precision global measurements of London penetration depth in FeTe0.58Se0.42"

    Get PDF
    International audienceCho et al. [Phys. Rev. B 84, 174502 (2011)] have reported on the temperature dependence of the London penetration depth deduced from tunnel diode oscillator (TDO) measurements in optimally doped Fe(Se,Te) single crystals. According to their analysis, these measurements could suggest a nodeless two-gap pairing symmetry with strong pair-breaking effects. However, to reach this conclusion, the authors fit the temperature dependence of the superfluid density with a two band clean limit model, which is incompatible with the presence of strong pair-breaking effects, deduced from the T n temperature dependence of the London penetration depth below Tc/3. Moreover, they claim that their results are also ruling out the suggestion that surface conditions can significantly affect the TDO data, but this conclusion is based on one very specific damaging process and completely ignores the large dispersion in the previously published TDO data

    Thermodynamics of the vortex liquid in heavy ion-irradiated superconductors

    Get PDF
    It is shown that the large effect of heavy ion-irradiation on the thermodynamical properties of the anisotropic superconductor YBa2_{2}Cu3_{3}O7δ_{7-\delta} extends well into the superconducting fluctuation regime. The presence of the induced amorphous columnar defects shifts the specific heat maximum at the normal-to-superconducting transition. This effect is similar to that recently put into evidence in cubic Kx_{x}Ba1x_{1-x}BiO3_{3} (x0.35x \simeq 0.35). In both compounds, vortex pinning manifests itself as a sharp angular dependence of the \em equilibrium \rm torque. In YBa2_{2}Cu3_{3}O7δ_{7-\delta}, pinning by the defects appears at the temperature TCpmaxT_{C_{p}}^{max} of the specific heat maximum, well above the magnetic irreversibility line Tirr(H)T_{irr}(H). In isotropic Kx_{x}Ba1x_{1-x}BiO3_{3}, the onset of the pinning-related torque anomaly tracks the onset of the specific heat anomaly and the irreversibility line. In YBa2_{2}Cu3_{3}O7δ_{7-\delta}, fluctuations of the amplitude of the order parameter (and not vortex line wandering) are ultimately responsible for the vanishing of pinning. In Kx_{x}Ba1x_{1-x}BiO3_{3}, vortex pinning disappears only at the superconducting-to-normal transition. The results indicate that in both compounds, the pinning energy at the ``Bose glass'' transition is large with respect to the total free energy gain in the superconducting state. By implication, the mechanism of this latter transition should be reconsidered.Comment: 9 pages, 9 figures, resubmitted to PRB 23-09-200

    Superconducting group-IV semiconductors

    Get PDF
    International audienceWe present recent achievements and predictions in the field of doping-induced superconductivity in column IV-based covalent semiconductors, with a focus on Bdoped diamond and silicon. Despite the amount of experimental and theoretical work produced over the last four years, many open questions and puzzling results remain to be clarified. The nature of the coupling (electronic correlation and/or phonon-mediated), the relationship between the doping concentration and the critical temperature (TC), which determines the prospects for higher transition temperatures, as well as the influence of disorder and dopant homogeneity, are debated issues that will determine the future of the field. We suggest that innovative superconducting devices, combining specific properties of diamond or silicon, and the maturity of semiconductor-based technologies, will soon be developed

    AC measurement of heat capacity and magnetocaloric effect for pulsed magnetic fields

    No full text
    International audienceA new calorimeter for measurements of the heat capacity and magnetocaloric effect of small samples in pulsed magnetic fields is discussed for the exploration of thermal and thermodynamic properties at temperatures down to 2 K. We tested the method up to 0H=50 T, but it could be extended to higher fields. For these measurements we used carefully calibrated bare-chip Cernox® and RuO2 thermometers, and we present a comparison of their performances. The monotonic temperature and magnetic field dependences of the magnetoresistance of RuO2 allow thermometry with a precision as good as 4 mK at T=2 K. To test the performance of our calorimeter, heat capacity and magnetocaloric effect for the spin-dimer compound Sr3Cr2O8 and the triangular lattice antiferromagnet RbFe MoO4 2 are presented

    Magnetic field dependence of the coherence length and penetration depth of MgB2 single crystals

    Get PDF
    International audienceWe report on specific heat and Hall probe magnetization measurements in magnesium diboride single crystals. A magnetic field dependence of the coherence length has been deduced from the former assuming that the electronic excitations are localized in field dependent vortex cores in which case is related to the Sommerfeld coefficient = Cp /T T→0 throughout, H /a0 2 a0 being the vortex spacing . The reversible part of the magnetization has been analyzed with a phenomenological Ginzburg-Landau model introducing field dependent parameters i.e., penetration depth and which account for the decreasing contribution of the -band with increasing field. This approach perfectly reproduces the experimental data by combining the field dependence of deduced from Cp 1/ 2 B with an almost linear increase of from 450 Å at low field to 700 Å close to Hc2. These field dependences can then be used to consistently describe the field dependence of the critical current density, small angle neutron scattering form factor, and muon spin relaxation rate

    Phase diagram of boron-doped diamond revisited by thickness-dependent transport studies

    Get PDF
    International audienceWe report on a detailed study of the electronic properties of a series of boron-doped diamond epilayers with dopant concentrations ranging from 1.10^ 20 to 3.10^21 cm −3 and thicknesses (d ⊥) ranging from 2 µm to 8 nm. By using well-defined mesa patterns that minimize the parasitic currents induced by doping inhomogeneities, we have been able to unveil a new phase diagram differing from all previous reports. We show that the onset of superconductivity does actually not coincide with the metal-insulator transition in this system. Moreover a dimensional crossover from 3D to 2D transport properties could be induced by reducing d ⊥ in both the metallic non-superconducting and superconducting epilayers, without any reduction of Tc with d ⊥ in the latter
    corecore