72 research outputs found

    Enteral and parenteral supplementation with glutamine in preterm and low-birth-weight neonates

    Get PDF
    A glutamina é o aminoácido livre mais abundante no sangue e no músculo esquelético, bem como é o principal substrato energético para células de elevado turnover, como enterócitos e leucócitos. Adicionalmente, a glutamina representa o principal aminoácido transferido para o feto pela placenta e, juntamente com o glutamato, constituem os aminoácidos mais abundantes no leite materno. Todavia, bebês nascidos prematuramente sofrem interrupção abrupta do fornecimento placentário de glutamina, o que acarreta em dependência exclusiva da síntese endógena ou do fornecimento exógeno deste aminoácido. Aliado a isso, neonatos pré-termo (PT) e com baixo peso ao nascer (BPN), freqüentemente, recebem apenas nutrição parenteral total nas primeiras semanas de vida, a qual não contém glutamina. Cabe ainda destacar que esses bebês possuem pouca massa muscular e, portanto, seus estoques de glutamina são limitados. Uma vez que neonatos PT e com BPN estão sujeitos a intenso crescimento e a inúmeros estresses fisiológicos, é possível que a glutamina seja um nutriente condicionalmente essencial nessa fase da vida, fato que estimulou a realização de estudos com a finalidade de avaliar os possíveis benefícios clínicos da suplementação enteral e parenteral com glutamina em neonatos PT e com BPN.Glutamine is the most abundant amino acid found in the blood and skeletal muscle, and is the principal energetic substrate for cells with a high turnover, such as enterocytes and leucocytes. Furthermore, glutamine is the most important amino acid that is passed to the foetus via the placenta, and together with glutamate, is the most abundant amino acid in maternal milk. Preterm infants suffer an abrupt interruption in the supply of glutamine via the placenta, which leads to an exclusive dependence on the endogenous synthesis or the exogenous supply of this amino acid. Preterm neonates (PT) as well as low-birth-weight neonates (LBW) frequently receive only total parenteral nutrition during their first weeks of life, which contains no glutamine. It must be pointed out that these infants present low muscular mass and that therefore, their stock of glutamine is limited. Because PT and BPN neonates are subject to intensive growth periods and numerous physiological stresses, it is possible that glutamine is a conditionally essential nutrient in this stage of life, thus giving foundation for the pursuit of studies aiming at the evaluation of the possible clinical benefits of enteral and parenteral supplementation with glutamine in PT and BPN neonates

    Does early weaning influence weight gain and body composition in adult mice?

    Get PDF
    OBJETIVO: Avaliar o efeito do desmame precoce sobre o ganho de peso e a composição corporal de camundongos adultos jovens. MÉTODOS: Camundongos Swiss Webster, machos, foram desmamados precocemente (14º dia de vida) ou amamentados até o 21º dia de vida (grupo controle). Após o desmame, os animais foram alimentados com ração elaborada para roedores em crescimento até o 63º dia de vida, quando então foram sacrificados. RESULTADOS: O peso corporal dos animais do grupo desmamado de forma precoce foi significantemente maior no 28º, 35º e no 63º dias de vida em relação ao grupo controle (p<0,05). Porém, o consumo de ração não diferiu entre os grupos. A concentração sérica de proteínas totais, albumina e ferro, bem como a concentração hepática, muscular e cerebral de proteínas, ácido desoxirribonucléico e a relação proteína/ácido ribonucléico, não diferiram significantemente entre os grupos. O grupo desmamado precocemente apresentou maior quantidade absoluta de massa magra, lipídeos, proteínas e cinzas, em comparação ao grupo controle (p<0,05). A quantidade relativa de umidade, lipídeos, massa magra, proteínas e cinzas não diferiu entre os grupos. CONCLUSÃO: O desmame precoce, associado à ingestão de ração elaborada para roedores em crescimento, resultou em aumento do ganho de peso, porém não afetou a composição corporal de camundongos adultos.OBJECTIVE: The objective of this study was to assess the effect of early weaning on weight gain and body composition of young adult mice. METHODS: Swiss Webster male mice were weaned early, on the 14th day of life, or breastfed until the 21st day of life (control group). After weaning, the animals were fed a chow specifically made for growing rodents up to the 63rd day of life, when they were sacrificed. RESULTS: The body weight of the animals from the early-weaned group was significantly greater on the 28th, 35th, 63rd days of life compared to those from the control group (p<0.05). Nevertheless, no significant difference in the food intake between the groups was observed. The concentration of serum total proteins, albumin and iron, as well as the concentration of protein, DNA and the protein/RNA ratio in the liver, muscle and brain, did not differ between the groups..The early-weaned group showed an increased absolute quantity of lean mass, lipids, protein and ash compared with the control group (p<0.05). The relative quantity of water, lipids, lean mass, protein and ash did not differ between the groups. CONCLUSION: Early weaning, associated with the consumption of a chow specifically made for growing rodents, led to an increase in weight gain, but did not influence body composition in adult mice.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq

    Association between diet and polymorphisms in individuals with statin-controlled dyslipidaemia grouped according to oxidative stress biomarkers

    Get PDF
    The objective of this study was to investigate whether differences in diet and in single-nucleotide polymorphisms (SNPs) found in paraoxonase-1 (PON-1), 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGCR), cholesterol ester transfer protein (CETP) and apolipoprotein E (APOE) genes, are associated with oxidative stress biomarkers and consequently with susceptibility of low-density cholesterol (LDL) to oxidation. A multivariate approach was applied to a group of 55 patients according to three biomarkers: plasma antioxidant activity, malondialdehyde and oxidized LDL (oxLDL) concentrations. Individuals classified in Cluster III showed the worst prognoses in terms of antioxidant activity and oxidative status. Individuals classified in Cluster I presented the lowest oxidative status, while individuals grouped in Cluster II presented the highest levels of antioxidant activity. No difference in nutrient intake was observed among the clusters. Significantly higher gamma- and delta-tocopherol concentrations were observed in those individuals with the highest levels of antioxidant activity. No single linear regression was statistically significant, suggesting that mutant alleles of the SNPs selected did not contribute to the differences observed in oxidative stress response. Although not statistically significant, the p value of the APO E coefficient for oxLDL response was 0.096, indicating that patients who carry the TT allele of the APO E gene tend to present lower plasma oxLDL concentrations. Therefore, the differences in oxidative stress levels observed in this study could not be attributed to diet or to the variant alleles of PON-1, CETP, HMGCR or APO E. This data supports the influence of gamma-tocopherol and delta-tocopherol on antioxidant activity, and highlights the need for further studies investigating APO E alleles and LDL oxidation.O objetivo deste estudo foi investigar se diferenças na dieta e em polimorfismos de nucleotídeos únicos (SNPs) encontrados no gene da paraoxonase 1 (PON-1), da 3-hidroxi-3-metilglutaril-coenzima A reductase (HMGCR), da proteína de transferência de ésteres de colesterol (CETP) e da apolipoproteina E (APOE) estariam associadas com biomarcadores do estresse oxidativo e, consequentemente, com a suscetibilidade da LDL à oxidação. Técnicas da estatística multivariada foram aplicadas a um grupo de 55 pacientes usando 3 biomarcadores: atividade antioxidante plasmática, concentrações de malondialdeído e LDL oxidada. Indivíduos classificados no cluster III apresentaram um prognóstico negativo em termos de atividade antioxidante e estado oxidativo. Os indivíduos agrupados no cluster I apresentaram o mais baixo nível de estado oxidativo, enquanto que indivíduos no cluster II apresentaram os mais altos níveis de atividade antioxidante. Nenhuma diferença na ingestão de nutrientes foi observada entre os clusters. Concentrações estatísticamente mais altas de γ- e δ-tocoferol foram observadas em indivíduos com mais altos níveis de atividade antioxidante. A regressão linear aplicada não foi estaticamente significativa, sugerindo que os alelos mutantes dos SNPs selecionados não contribuíram para as diferenças nos níveis de estresse oxidativo. Embora não tenha sido estatisticamente significativa, o valor da probabilidade associado ao coeficiente da relação entre ApoE e oxLDL foi de 0,096, indicando que pacientes que carregam o alelo TT da ApoE tendem a apresentar menores concentrações plasmáticas de LDL oxidada. Portanto, as diferenças no estresse oxidativo observadas em nosso estudo não puderam ser atribuídas à dieta e alelos variantes de PON-1, CETP, HMGCR ou ApoE. Nossos dados suportam a influência γ- tocoferol e δ-tocoferol na atividade antioxidante e reforçam a necessidade de mais pesquisas que investiguem a relação entre alelos da Apo E e a oxidação da LDL.FAPESP [07/01476-8, 08/00482-7, 08/10826-5

    Role of Tea Polyphenols in Metabolic Syndrome

    Get PDF
    Metabolic syndrome (MetS) increases the risk of type 2 diabetes and cardiovascular diseases (CVD). Tea (Camellia sinensis), one of the most consumed beverages in the world, is rich in polyphenols, mainly catechins. Tea polyphenols may ameliorate obesity by reducing body weight, increasing energy expenditure and fat oxidation, stimulating lipolysis, and improving thermogenesis. Tea polyphenols also reduce the risks of type 2 diabetes (T2D), hypertension, hyperlipidemia, and inflammation. Results of clinical trials on the effects of the consumption of tea beverage, tea extracts, or isolated tea polyphenols on biomarkers of metabolic syndrome will be reviewed in this study. The effects of tea polyphenols on antioxidant status and low-grade chronic inflammation and the molecular mechanisms involved will also be discussed

    Studies of Gene Variants Related to Inflammation, Oxidative Stress, Dyslipidemia, and Obesity: Implications for a Nutrigenetic Approach

    Get PDF
    Obesity is currently considered a serious public health issue due to its strong impact on health, economy, and quality of life. It is considered a chronic low-grade inflammation state and is directly involved in the genesis of metabolic disturbances, such as insulin resistance and dyslipidemia, which are well-known risk factors for cardiovascular disease. Furthermore, there is evidence that genetic variation that predisposes to inflammation and metabolic disturbances could interact with environmental factors, such as diet, modulating individual susceptibility to developing these conditions. This paper aims to review the possible interactions between diet and single-nucleotide polymorphisms (SNPs) in genes implicated on the inflammatory response, lipoprotein metabolism, and oxidative status. Therefore, the impact of genetic variants of the peroxisome proliferator-activated receptor-(PPAR-)gamma, tumor necrosis factor-(TNF-)alpha, interleukin (IL)-1, IL-6, apolipoprotein (Apo) A1, Apo A2, Apo A5, Apo E, glutathione peroxidases 1, 2, and 4, and selenoprotein P exposed to variations on diet composition is described

    Effect of Echium oil compared with marine oils on lipid profile and inhibition of hepatic steatosis in LDLr knockout mice

    Get PDF
    Abstract\ud \ud \ud \ud Background\ud \ud In an effort to identify new alternatives for long-chain n-3 polyunsaturated fatty acids (LC n-3 PUFA) supplementation, the effect of three sources of omega 3 fatty acids (algae, fish and Echium oils) on lipid profile and inflammation biomarkers was evaluated in LDL receptor knockout mice.\ud \ud \ud \ud Methods\ud \ud The animals received a high fat diet and were supplemented by gavage with an emulsion containing water (CON), docosahexaenoic acid (DHA, 42.89%) from algae oil (ALG), eicosapentaenoic acid (EPA, 19.97%) plus DHA (11.51%) from fish oil (FIS), and alpha-linolenic acid (ALA, 26.75%) plus stearidonic acid (SDA, 11.13%) from Echium oil (ECH) for 4 weeks.\ud \ud \ud \ud Results\ud \ud Animals supplemented with Echium oil presented lower cholesterol total and triacylglycerol concentrations than control group (CON) and lower VLDL than all of the other groups, constituting the best lipoprotein profile observed in our study. Moreover, the Echium oil attenuated the hepatic steatosis caused by the high fat diet. However, in contrast to the marine oils, Echium oil did not affect the levels of transcription factors involved in lipid metabolism, such as Peroxisome Proliferator Activated Receptor α (PPAR α) and Liver X Receptor α (LXR α), suggesting that it exerts its beneficial effects by a mechanism other than those observed to EPA and DHA. Echium oil also reduced N-6/N-3 FA ratio in hepatic tissue, which can have been responsible for the attenuation of steatosis hepatic observed in ECH group. None of the supplemented oils reduced the inflammation biomarkers.\ud \ud \ud \ud Conclusion\ud \ud Our results suggest that Echium oil represents an alternative as natural ingredient to be applied in functional foods to reduce cardiovascular disease risk factors.The authors thank to FAPESP (09/15649-7; 10/12042-1, 10/08225-3) for the financial support

    Effects of Two Different Levels of Dietary Protein on Body Composition and Protein Nutritional Status of Growing Rats

    Get PDF
    This study aimed to investigate the effect of a high-protein diet on growth, body composition, and protein nutritional status of young rats. Newly-weaned Wistar rats, weighing 45-50 g, were distributed in two experimental groups, according to their diets, which contained 12% (G12) or 26% protein (G26), over a period of 3 weeks. The animals were euthanized at the end of this period and the following analyses were performed: chemical composition of the carcass, proteoglycan synthesis, IGF-I concentration (serum, muscle and cartilage), total tissue RNA, protein concentration (muscle and cartilage) and protein synthesis (muscle and cartilage). The high-protein diet was found to result in a higher fat-free mass and lower fat mass in the carcass, with no difference in growth or protein nutritional status.Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP)Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq), Brazi

    Short-term high-fat diet affects macrophages inflammatory response, early signs of a long-term problem

    Get PDF
    Obesity is a chronic inflammatory disease that affects millions of people worldwide. Most studies observe the effects of a high-fat diet (HFD) in 10–12 weeks. This work investigated the effects induced by a HFD administered for 6 weeks on the nutritional status of mice and some aspects of the inflammatory response in mouse peritoneal macrophages. Male Swiss Webster mice, 2–3 months of age, were fed a control diet or HFD for 6 weeks. After this period, the mice were euthanized, and peritoneal macrophages were collected for immunoassays and assessment of biochemical parameters. A HFD was associated with increased cholesterol, insulin resistance, C-reactive protein (CRP), leptin, and serum resistin levels. Lipopolysaccharide (LPS)- stimulated adipocyte cultures of animals subjected to a HFD showed increased production of proinflammatory cytokines such as tumor necrosis factor alpha (TNF-α), interleukin-1 (IL-1), and interleukin-6 (IL-6). However, peritoneal macrophages of the HFD group showed no changes in the levels of these cytokines. LPS-stimulated peritoneal macrophages from HFD-treated animals showed a reduction in mRNA expression of TNF-α and IL-6, as well as a decrease in expression of the transcription factor nuclear factor-kappa B (NF-kB). In conclusion, HFD treatment for 6 weeks induces similar signs to metabolic syndrome and decreases the capacity of peritoneal macrophages to develop an appropriate inflammatory response to a bacterial component

    Associations of the TNF-alpha-308 G/A, IL6-174 G/C and AdipoQ 45 T/G polymorphisms with inflammatory and metabolic responses to lifestyle intervention in Brazilians at high cardiometabolic risk

    Get PDF
    Background: Cytokines secreted by the adipose tissue influence inflammation and insulin sensitivity, and lead to metabolic disturbances. How certain single-nucleotide polymorphisms (SNPs) interfere on lifestyle interventions is unclear. We assessed associations of selected SNPs with changes induced by a lifestyle intervention. Methods: This 9-month intervention on diet and physical activity included 180 Brazilians at high cardiometabolic risk, genotyped for the TNF-alpha -308 G/A, IL-6 -174 G/C and AdipoQ 45 T/G SNPs. Changes in metabolic and inflammatory variables were analyzed according to these SNPs. Individuals with at least one variant allele were grouped and compared with those with the reference genotype. Results: In the entire sample (66.7% women; mean age 56.5 +/- 11.6 years), intervention resulted in lower energy intake, higher physical activity, and improvement in anthropometry, plasma glucose, HOMA-IR, lipid profile and inflammatory markers, except for IL-6 concentrations. After intervention, only variant allele carriers of the TNF-alpha -308 G/A decreased plasma glucose, after adjusting for age and gender (OR 2.96, p = 0.025). Regarding the IL-6 -174 G/C SNP, carriers of the variant allele had a better response of lipid profile and adiponectin concentration, but only the reference genotype group decreased plasma glucose. In contrast to individuals with the reference genotype, carriers of variant allele of AdipoQ 45 T/G SNP did not change plasma glucose, apolipoprotein B, HDL-c and adiponectin concentrations in response to intervention. Conclusion: The TNF alpha -308 G/A SNP may predispose a better response of glucose metabolism to lifestyle intervention. The IL-6 -174 G/C SNP may confer a beneficial effect on lipid but not on glucose metabolism. Our findings reinforce unfavorable effects of the AdipoQ 45 T/G SNP in lipid profile and glucose metabolism after intervention in Brazilians at cardiometabolic risk. Further studies are needed to direct lifestyle intervention to subsets of individuals at cardiometabolic risk.State of Sao PauloState of Sao Paul

    Effects of Dietary Glutamine Supplementation on the Body Composition and Protein Status of Early-Weaned Mice Inoculated with Mycobacterium bovis Bacillus Calmette-Guerin

    Get PDF
    Glutamine, one of the most abundant amino acids found in maternal milk, favors protein anabolism. Early-weaned babies are deprived of this source of glutamine, in a period during which endogenous biosynthesis may be insufficient for tissue needs in states of metabolic stress, mainly during infections. The objective of this study was to verify the effects of dietary glutamine supplementation on the body composition and visceral protein status of early-weaned mice inoculated with Mycobacterium bovis Bacillus Calmette-Guérin (BCG). Mice were weaned early on their 14th day of life and seperated into two groups, one of which was fed a glutamine-free diet (n = 16) and the other a glutamine-supplemented diet (40 g/kg diet) (n = 16). At 21 days of age, some mice were intraperitoneally injected with BCG. Euthanasia was performed at the 28th day of age. BCG inoculation significantly reduced body weight (P < 0.001), lean mass (P = 0.002), water (P = 0.006), protein (P = 0.007) and lipid content (P = 0.001) in the carcass. Dietary glutamine supplementation resulted in a significant increase in serum IGF-1 (P = 0.019) and albumin (P = 0.025) concentration, muscle protein concentration (P = 0.035) and lipid content (P = 0.002) in the carcass. In conclusion, dietary glutamine supplementation had a positive influence on visceral protein status but did not affect body composition in early-weaned mice inoculated with BCG
    corecore