109 research outputs found

    Limiti di carica microbica ed accettabilità delle carni avicole fresche

    Get PDF
    The minimum number of bacteria, which correlate to end of shelf-life, should be defined by producers in order to establish microbiological standards at the end of productive process or at specifie defect action points, taking into account the possible temperature conditions the various products will probably meet. This would allow the quality assurance of all lots of products until the end of declared shelf life. Entire chicken, sliced chicken breast, skewers of chicken with pepper, ripened chicken leg and cordon bleu samples were stored at temperature condition from -0.2° to 5.9°C for 9-11 days. Then they were analysed for microbiological traits and, on the basis of sensorial characteristics, were classified as acceptable, marginally acceptable or not acceptable. It was defined the maximum number of Pseudomonas spp., total coliforms or total plate count at which unacceptable products were not found and significance of these discriminatory limits was evaluated. Per stabilire la durata commerciale delle diverse preparazioni di carni avicole i produttori dovrebbero conoscere quali sono le concentrazioni minime di batteri alteranti correlabili alla comparsa di alterazioni e quali sono, quindi, gli standard microbiologici in fase di produzione od in specifici punti critici di controllo (defect action point) che permettano di assicurare, in condizioni programmate di temperatura, la qualità di un lotto di produzione fine al termine indicato in etichetta. Campioni di diversi lotti di busti di pollo, petti di pollo a fette, spiedini con peperone, fusotti ripieni e cordon bleu sono stati sottoposti a regimi di temperatura tra -0,2° e 5,9°C per 9-11 giorni. Al termine di questo periodo sono stati fatti controlli microbiologici e sulla base delle caratteristiche organolettiche sono stati classificati accettabili, marginali o inaccettabili. È stato quindi individuato il limite più alto di Pseudomonas spp., coliformi totali o carica mesofila totale al di sotto del quale non fossero riscontrabili unità inaccettabili ed è stata valutata la significatività di questo limite discriminante

    Dysbiosis Triggers ACF Development in Genetically Predisposed Subjects

    Get PDF
    Background: Colorectal cancer (CRC) is the third most common cancer worldwide, characterized by a multifactorial etiology including genetics, lifestyle, and environmental factors including microbiota composition. To address the role of microbial modulation in CRC, we used our recently established mouse model (the Winnie-APCMin/+) combining inflammation and genetics.Methods: Gut microbiota profiling was performed on 8-week-old Winnie-APCMin/+ mice and their littermates by 16S rDNA gene amplicon sequencing. Moreover, to study the impact of dysbiosis induced by the mother's genetics in ACF development, the large intestines of APCMin/+ mice born from wild type mice were investigated by histological analysis at 8 weeks.Results: ACF development in 8-week-old Winnie-APCMin/+mice was triggered by dysbiosis. Specifically, the onset of ACF in genetically predisposed mice may result from dysbiotic signatures in the gastrointestinal tract of the breeders. Additionally, fecal transplant from Winnie donors to APCMin/+ hosts leads to an increased rate of ACF development.Conclusions: The characterization of microbiota profiling supporting CRC development in genetically predisposed mice could help to design therapeutic strategies to prevent dysbiosis. The application of these strategies in mothers during pregnancy and lactation could also reduce the CRC risk in the offspring

    Secretory Leukoprotease Inhibitor (Slpi) Expression Is Required for Educating Murine Dendritic Cells Inflammatory Response Following Quercetin Exposure

    Get PDF
    Dendritic cells’ (DCs) ability to present antigens and initiate the adaptive immune response confers them a pivotal role in immunological defense against hostile infection and, at the same time, immunological tolerance towards harmless components of the microbiota. Food products can modulate the inflammatory status of intestinal DCs. Among nutritionally-derived products, we investigated the ability of quercetin to suppress inflammatory cytokines secretion, antigen presentation, and DCs migration towards the draining lymph nodes. We recently identified the Slpi expression as a crucial checkpoint required for the quercetin-induced inflammatory suppression. Here we demonstrate that Slpi-KO DCs secrete a unique panel of cytokines and chemokines following quercetin exposure. In vivo, quercetin-enriched food is able to induce Slpi expression in the ileum, while little effects are detectable in the duodenum. Furthermore, Slpi expressing cells are more frequent at the tip compared to the base of the intestinal villi, suggesting that quercetin exposure could be more efficient for DCs projecting periscopes in the intestinal lumen. These data suggest that quercetin-enriched nutritional regimes may be efficient for suppressing inflammatory syndromes affecting the ileo-colonic tract

    Extra Virgin Olive Oil Extracts Modulate the Inflammatory Ability of Murine Dendritic Cells Based on Their Polyphenols Pattern: Correlation between Chemical Composition and Biological Function

    Get PDF
    Extra virgin olive oil (EVOO) represents one of the most important health-promoting foods whose antioxidant and anti-inflammatory activities are mainly associated to its polyphenols content. To date, studies exploring the effect of EVOO polyphenols on dendritic cells (DCs), acting as a crosstalk between the innate and the adaptive immune response, are scanty. Therefore, we studied the ability of three EVOO extracts (cv. Coratina, Cima di Mola/Coratina, and Casaliva), characterized by different polyphenols amount, to regulate DCs maturation in resting conditions or after an inflammatory stimulus. Cima di Mola/Coratina and Casaliva extracts were demonstrated to be the most effective in modulating DCs toward an anti-inflammatory profile by reduction of TNF and IL-6 secretion and CD86 expression, along with a down-modulation of Il-1β and iNOS expression. From factorial analysis results, 9 polyphenols were tentatively established to play a synergistic role in modulating DCs inflammatory ability, thus reducing the risk of chronic inflammation

    Secretory leukoprotease inhibitor is required for efficient quercetin-mediated suppression of TNFα secretion

    Get PDF
    Dendritic cells (DCs) are professional antigen presenting cells (APCs) that in response to microbial infections generate long-lasting adaptive immune response. Following microbial uptake, DCs undergo a cascade of cellular differentiation that ultimately leads to “mature” DCs. Mature DCs produce a variety of inflammatory cytokines, including tumor necrosis factor-α (TNFα) a key cytokine for the inflammatory cascade. In numerous studies, polyphenols, including quercetin, demonstrated their ability to suppress TNFα secretion and protect from the onset of chronic inflammatory disorders. We show that murine bone marrow derived DCs express Slpi following quercetin exposure. Slpi is known to suppress LPS mediated NFκB activation, thus, it was hypothesized that its expression could be the key step for polyphenol induced inflammatory suppression. Slpi-KO DCs poorly respond to quercetin administration failing to reduce TNFα secretion in response to quercetin exposure. Supernatant from quercetin exposed DCs could also reduce LPS-mediated TNFα secretion by unrelated DCs, but this property is lost using an anti-Slpi antibody. In vivo, oral administration of quercetin is able to induce Slpi expression. Human biopsies from inflamed tract of the intestine reveal the presence of numerous SLPI(+) cells and the expression level could be further increased by quercetin administration. We propose that quercetin induces Slpi expression that in turn reduces the inflammatory response. Our data encourages the development of nutritional strategies to improve the efficiency of current therapies for intestinal chronic inflammatory syndrome and reduce the risks of colorectal cancer development

    Cluster counting algorithms for particle identification at future colliders

    Full text link
    Recognition of electron peaks and primary ionization clusters in real data-driven waveform signals is the main goal of research for the usage of the cluster counting technique in particle identification at future colliders. The state-of-the-art open-source algorithms fail in finding the cluster distribution Poisson behavior even in low-noise conditions. In this work, we present cutting-edge algorithms and their performance to search for electron peaks and identify ionization clusters in experimental data using the latest available computing tools and physics knowledge.Comment: 6 pages, 12 figures, Proceedings of: ACAT202

    Aquaporin-9 Contributes to the Maturation Process and Inflammatory Cytokine Secretion of Murine Dendritic Cells

    Get PDF
    Dendritic cells (DCs) are the most potent antigen-presenting cells able to trigger the adaptive immune response to specific antigens. When non-self-antigens are captured, DCs switch from an “immature” to a “mature” state to fulfill their function. Among the several surface proteins involved in DCs maturation, the role of aquaporins (AQPs) is still poorly understood. Here we investigated the expression profile of Aqps in murine bone marrow derived dendritic cells (BMDCs). Among the Aqps analyzed, Aqp9 was the most expressed by DCs. Its expression level was significantly upregulated 6 h following LPS exposure. Chemical inhibition of Aqp9 led to a decreased inflammatory cytokines secretion. BMDCs from AQP9-KO mice release lower amount of inflammatory cytokines and chemokines and increased release of IL-10. Despite the reduced release of inflammatory cytokines, Aqp9-KO mice were not protected from DSS induced colitis. All together, our data indicate that AQP9 blockade can be an efficient strategy to reduce DCs inflammatory response but it is not sufficient to protect from acute inflammatory insults such as DSS induced colitis

    Interleukin-1β blockade reduces intestinal inflammation in a murine model of Tumor Necrosis Factor-independent ulcerative colitis

    Get PDF
    Background & aimsInflammatory bowel diseases (IBDs) are multifactorial diseases commonly treated with either immunomodulatory drugs or anti-tumor necrosis factor (TNF). Currently, failure to respond to anti-TNF therapy (assessed not prior to 8-12 weeks after starting treatment) occurs in 20-40% of patients enrolled in clinical trials and 10-20% in clinical practice. Murine models of IBD provide important tools to better understand disease mechanism(s). In this context and among the numerous models available, Winnie-TNF-KO mice were recently reported to display characteristics of ulcerative colitis (UC) that are independent of TNF, and with increased IL-1β production.MethodsHerein, the efficacy of recombinant (r) IL-1 receptor antagonist (IL-1Ra, Anakinra) administration was evaluated in Winnie-TNF-KO mice, utilized as an UC model of primary anti-TNF non-responders.ResultsWe analyzed gut mucosal biopsies and circulating cytokine profiles of a cohort of 30 UC patients; approximately 75% of primary non-responders were characterized by abundant IL-1β in both the serum and local intestinal tissues. In Winnie-TNF-KO mice, administration of Anakinra efficiently reduced the histological score of the distal colon, which represents the most common site of inflammation in Winnie mice. Furthermore, among lamina propria and mesenteric lymph node-derived T cells, IFNγ-expressing CD8+ T cells were significantly reduced following Anakinra administration.ConclusionsOur study provides new insight and alternative approaches to treat UC patients, and point to anti-IL-1 strategies (i.e., Anakinra) that may be a more effective therapeutic option for primary non-responders to anti-TNF therapy

    A Bronze-Tomato Enriched Diet Affects the Intestinal Microbiome under Homeostatic and Inflammatory Conditions

    Get PDF
    Inflammatory bowel diseases (IBD) are debilitating chronic inflammatory disorders that develop as a result of a defective immune response toward intestinal bacteria. Intestinal dysbiosis is associated with the onset of IBD and has been reported to persist even in patients in deep remission. We investigated the possibility of a dietary-induced switch to the gut microbiota composition using Winnie mice as a model of spontaneous ulcerative colitis and chow enriched with 1% Bronze tomato. We used the near isogenic tomato line strategy to investigate the effects of a diet enriched in polyphenols administered to mild but established chronic intestinal inflammation. The Bronze-enriched chow administered for two weeks was not able to produce any macroscopic effect on the IBD symptoms, although, at molecular level there was a significant induction of anti-inflammatory genes and intracellular staining of T cells revealed a mild decrease in IL17A and IFNγ production. Analysis of the microbial composition revealed that two weeks of Bronze enriched diet was sufficient to perturb the microbial composition of Winnie and control mice, suggesting that polyphenol-enriched diets may create unfavorable conditions for distinct bacterial species. In conclusion, dietary regimes enriched in polyphenols may efficiently support IBD remission affecting the intestinal dysbiosis
    corecore