361 research outputs found
A Network of Psychopathological, Cognitive, and Motor Symptoms in Schizophrenia Spectrum Disorders
Schizophrenia spectrum disorders (SSDs) are complex syndromes involving psychopathological, cognitive, and also motor symptoms as core features. A better understanding of how these symptoms mutually impact each other could translate into diagnostic, prognostic, and, eventually, treatment advancements. The present study aimed to: (1) estimate a network model of psychopathological, cognitive, and motor symptoms in SSD; (2) detect communities and explore the connectivity and relative importance of variables within the network; and (3) explore differences in subsample networks according to remission status. A sample of 1007 patients from a multisite cohort study was included in the analysis. We estimated a network of 43 nodes, including all the items from the Positive and Negative Syndrome Scale, a cognitive assessment battery and clinical ratings of extrapyramidal symptoms. Methodologies specific to network analysis were employed to address the study’s aims. The estimated network for the total sample was densely interconnected and organized into 7 communities. Nodes related to insight, abstraction capacity, attention, and suspiciousness were the main bridges between network communities. The estimated network for the subgroup of patients in remission showed a sparser density and a different structure compared to the network of nonremitted patients. In conclusion, the present study conveys a detailed characterization of the interrelations between a set of core clinical elements of SSD. These results provide potential novel clues for clinical assessment and intervention
Complex chromosome 17p rearrangements associated with low-copy repeats in two patients with congenital anomalies
Recent molecular cytogenetic data have shown that the constitution of complex chromosome rearrangements (CCRs) may be more complicated than previously thought. The complicated nature of these rearrangements challenges the accurate delineation of the chromosomal breakpoints and mechanisms involved. Here, we report a molecular cytogenetic analysis of two patients with congenital anomalies and unbalanced de novo CCRs involving chromosome 17p using high-resolution array-based comparative genomic hybridization (array CGH) and fluorescent in situ hybridization (FISH). In the first patient, a 4-month-old boy with developmental delay, hypotonia, growth retardation, coronal synostosis, mild hypertelorism, and bilateral club feet, we found a duplication of the Charcot-Marie–Tooth disease type 1A and Smith-Magenis syndrome (SMS) chromosome regions, inverted insertion of the Miller-Dieker lissencephaly syndrome region into the SMS region, and two microdeletions including a terminal deletion of 17p. The latter, together with a duplication of 21q22.3-qter detected by array CGH, are likely the unbalanced product of a translocation t(17;21)(p13.3;q22.3). In the second patient, an 8-year-old girl with mental retardation, short stature, microcephaly and mild dysmorphic features, we identified four submicroscopic interspersed 17p duplications. All 17 breakpoints were examined in detail by FISH analysis. We found that four of the breakpoints mapped within known low-copy repeats (LCRs), including LCR17pA, middle SMS-REP/LCR17pB block, and LCR17pC. Our findings suggest that the LCR burden in proximal 17p may have stimulated the formation of these CCRs and, thus, that genome architectural features such as LCRs may have been instrumental in the generation of these CCRs
Urbanization and traffic related exposures as risk factors for Schizophrenia
BACKGROUND: Urban birth or upbringing increase schizophrenia risk. Though unknown, the causes of these urban-rural differences have been hypothesized to include, e.g., infections, diet, toxic exposures, social class, or an artefact due to selective migration. METHODS: We investigated the hypothesis that traffic related exposures affect schizophrenia risk and that this potential effect is responsible for the urban-rural differences. The geographical distance from place of residence to nearest major road was used as a proxy variable for traffic related exposures. We used a large population-based sample of the Danish population (1.89 million people) including information on all permanent addresses linked with geographical information on all roads and house numbers in Denmark. Schizophrenia in cohort members (10,755 people) was identified by linkage with the Danish Psychiatric Central Register. RESULTS: The geographical distance from place of residence to nearest major road had a significant effect. The highest risk was found in children living 500–1000 metres from nearest major road (RR = 1.30 (95% Confidence Interval: 1.17–1.44). However, when we accounted for the degree of urbanization, the geographical distance to nearest major road had no significant effect. CONCLUSION: The cause(s) or exposure(s) responsible for the urban-rural differences in schizophrenia risk were closer related to the degree of urbanization than to the geographical distance to nearest major road. Traffic related exposures might thus be less likely explanations for the urban-rural differences in schizophrenia risk
Converting simulated total dry matter to fresh marketable yield for field vegetables at a range of nitrogen supply levels
Simultaneous analysis of economic and environmental performance of horticultural crop production requires qualified assumptions on the effect of management options, and particularly of nitrogen (N) fertilisation, on the net returns of the farm. Dynamic soil-plant-environment simulation models for agro-ecosystems are frequently applied to predict crop yield, generally as dry matter per area, and the environmental impact of production. Economic analysis requires conversion of yields to fresh marketable weight, which is not easy to calculate for vegetables, since different species have different properties and special market requirements. Furthermore, the marketable part of many vegetables is dependent on N availability during growth, which may lead to complete crop failure under sub-optimal N supply in tightly calculated N fertiliser regimes or low-input systems. In this paper we present two methods for converting simulated total dry matter to marketable fresh matter yield for various vegetables and European growth conditions, taking into consideration the effect of N supply: (i) a regression based function for vegetables sold as bulk or bunching ware and (ii) a population approach for piecewise sold row crops. For both methods, to be used in the context of a dynamic simulation model, parameter values were compiled from a literature survey. Implemented in such a model, both algorithms were tested against experimental field data, yielding an Index of Agreement of 0.80 for the regression strategy and 0.90 for the population strategy. Furthermore, the population strategy was capable of reflecting rather well the effect of crop spacing on yield and the effect of N supply on product grading
The MRN complex is transcriptionally regulated by MYCN during neural cell proliferation to control replication stress
The MRE11/RAD50/NBS1 (MRN) complex is a major sensor of DNA double strand breaks, whose role in controlling faithful DNA replication and preventing replication stress is also emerging. Inactivation of the MRN complex invariably leads to developmental and/or degenerative neuronal defects, the pathogenesis of which still remains poorly understood. In particular, NBS1 gene mutations are associated with microcephaly and strongly impaired cerebellar development, both in humans and in the mouse model. These phenotypes strikingly overlap those induced by inactivation of MYCN, an essential promoter of the expansion of neuronal stem and progenitor cells, suggesting that MYCN and the MRN complex might be connected on a unique pathway essential for the safe expansion of neuronal cells. Here, we show that MYCN transcriptionally controls the expression of each component of the MRN complex. By genetic and pharmacological inhibition of the MRN complex in a MYCN overexpression model and in the more physiological context of the Hedgehog-dependent expansion of primary cerebellar granule progenitor cells, we also show that the MRN complex is required for MYCN-dependent proliferation. Indeed, its inhibition resulted in DNA damage, activation of a DNA damage response, and cell death in a MYCN- and replication-dependent manner. Our data indicate the MRN complex is essential to restrain MYCN-induced replication stress during neural cell proliferation and support the hypothesis that replication-born DNA damage is responsible for the neuronal defects associated with MRN dysfunctions.Cell Death and Differentiation advance online publication, 12 June 2015; doi:10.1038/cdd.2015.81
Maternal risk associated with the VACTERL association:A case-control study
Background The VACTERL association (VACTERL) includes at least three of these congenital anomalies: vertebral, anal, cardiac, trachea-esophageal, renal, and limb anomalies. Assisted reproductive techniques (ART), pregestational diabetes mellitus, and chronic lower obstructive pulmonary disorders (CLOPD) have been associated with VACTERL. We aimed to replicate these findings and were interested in additional maternal risk factors. Methods A case-control study using self-administered questionnaires was performed including 142 VACTERL cases and 2,135 population-based healthy controls. Multivariable logistic regression analyses were performed to estimate confounder adjusted odds ratios (aOR) and 95% confidence intervals (95%CI). Results Parents who used invasive ART had an increased risk of VACTERL in offspring (aOR 4.4 [95%CI 2.1-8.8]), whereas the increased risk for mothers with CLOPD could not be replicated. None of the case mothers had pregestational diabetes mellitus. Primiparity (1.5 [1.1-2.1]) and maternal pregestational overweight and obesity (1.8 [1.2-2.8] and 1.8 [1.0-3.4]) were associated with VACTERL. Consistent folic acid supplement use during the advised periconceptional period may reduce the risk of VACTERL (0.5 [0.3-1.0]). Maternal smoking resulted in an almost twofold increased risk of VACTERL. Conclusion We identified invasive ART, primiparity, pregestational overweight and obesity, lack of folic acid supplement use, and smoking as risk factors for VACTERL
Genetic Evaluation of A Nation-Wide Dutch Pediatric DCM Cohort:The Use of Genetic Testing in Risk Stratification
BACKGROUND: This study aimed to describe the current practice and results of genetic evaluation in Dutch children with dilated cardiomyopathy and to evaluate genotype-phenotype correlations that may guide prognosis. METHODS: We performed a multicenter observational study in children diagnosed with dilated cardiomyopathy, from 2010 to 2017. RESULTS: One hundred forty-four children were included. Initial diagnostic categories were idiopathic dilated cardiomyopathy in 67 children (47%), myocarditis in 23 (16%), neuromuscular in 7 (5%), familial in 18 (13%), inborn error of metabolism in 4 (3%), malformation syndrome in 2 (1%), and "other" in 23 (16%). Median follow-up time was 2.1 years [IQR 1.0-4.3]. Hundred-seven patients (74%) underwent genetic testing. We found a likely pathogenic or pathogenic variant in 38 children (36%), most often in MYH7 (n = 8). In 1 patient initially diagnosed with myocarditis, a pathogenic LMNA variant was found. During the study, 39 patients (27%) reached study endpoint (SE: all-cause death or heart transplantation). Patients with a likely pathogenic or pathogenic variant were more likely to reach SE compared with those without (hazard ratio 2.8; 95% CI 1.3-5.8, P = 0.007), while transplant-free survival was significantly lower (P = 0.006). Clinical characteristics at diagnosis did not differ between the 2 groups. CONCLUSIONS: Genetic testing is a valuable tool for predicting prognosis in children with dilated cardiomyopathy, with carriers of a likely pathogenic or pathogenic variant having a worse prognosis overall. Genetic testing should be incorporated in clinical work-up of all children with dilated cardiomyopathy regardless of presumed disease pathogenesis
Effectiveness of life skills training on increasing self-esteem of high school students
AbstractObjective This study designed to investigate effectiveness of training life skills on adolescents’ students. Method This study is a pseudo-experimental study which accomplished on 160 students in Karaj city. Subjects of the study selected randomly from list of students in all of the schools of Karaj; then they divided randomly in two groups. Trained counsellors taught the life skills to students of the study group, and 80 reminder subjects assigned as control group. After educating the training program, subjects administered Cooper Smith self-esteem questionnaire (58-items version). Results Findings of the study indicated that life skills training lead to significant increase of self-esteem in study group in contrast to control group subjects. Conclusion Psycho education and mental health programs such as life skills training could cause to increase the necessary skills in students and decline school and educational problems
A nutrient control on marine anoxia during the end-Permian mass extinction
Oxygen deprivation and hydrogen sulfide toxicity are considered potent kill mechanisms during the mass extinction just before the Permian–Triassic boundary (~251.9 million years ago). However, the mechanism that drove vast stretches of the ocean to an anoxic state is unclear. Here, we present palaeoredox and phosphorus speciation data for a marine bathymetric transect from Svalbard. This shows that, before the extinction, enhanced weathering driven by Siberian Traps volcanism increased the influx of phosphorus, thus enhancing marine primary productivity and oxygen depletion in proximal shelf settings. However, this non-sulfidic state efficiently sequestered phosphorus in the sediment in association with iron minerals, thus restricting the intensity and spatial extent of oxygen-depleted waters. The collapse of vegetation on land immediately before the marine extinction changed the relative weathering influx of iron and sulfate. The resulting transition to euxinic (sulfidic) conditions led to enhanced remobilization of bioavailable phosphorus, initiating a feedback that caused the spread of anoxic waters across large portions of the shelf. This reconciles a lag of >0.3 million years between the onset of enhanced weathering and the development of widespread, but geographically variable, ocean anoxia, with major implications for extinction selectivity
- …