22 research outputs found

    Reply to "comment on 'Free-Radical Formation by the Peroxidase-Like Catalytic Activity of MFe2O4 (M = Fe, Ni, and Mn) Nanoparticles'"

    Get PDF
    Recently we have reported a qualitative, quantitative and reproducible study of the generation of free radicals as a result of the surface catalytic activity of Fe3O4, Fe2O3, MnFe2O4 and NiFe2O4 nanoparticles as a function of the Fe2+/Fe3+ oxidation state under different pHs (4.8 and 7.4) and temperatures (25 ºC and 40 ºC) condition. These results were contrasted with those obtained from the in vitro experiments in BV2 cells incubated with dextran-coated magneticnanoparticles. Based on these results we affirm that our ferrite magnetic nanoparticles catalyze the formation of free radicals and the decomposition of H2O2 by a ?peroxidase-like? activity. In a comment on this article, Meunier and A. Robert question two points: First they assert that the measured free radicals are not produced by a peroxidase reaction. Also, based on a different normalization method from those reported in our work, they also discuss that the reaction is not catalytic. Here we reply the arguments of the authors about these two points.Fil: Moreno Maldonado, Ana Carolina. Instituto de Nanociencia de Aragón; ; EspañaFil: Winkler, Elin Lilian. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Comisión Nacional de Energía Atómica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. - Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología; ArgentinaFil: Raineri Andersen, Mariana. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Comisión Nacional de Energía Atómica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. - Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología; ArgentinaFil: Toro Cordova, Alfonso. Universidad de Zaragoza; EspañaFil: Rodriguez, Luis Miguel. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Comisión Nacional de Energía Atómica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. - Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología; ArgentinaFil: Troiani, Horacio Esteban. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Mojica Pisciotti, Mary Luz. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Vasquez Mansilla, Marcelo. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Comisión Nacional de Energía Atómica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. - Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología; ArgentinaFil: Tobia, Dina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Comisión Nacional de Energía Atómica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. - Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología; ArgentinaFil: Nadal, Marcela. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Comisión Nacional de Energía Atómica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. - Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología; ArgentinaFil: Torres Molina, Teobaldo Enrique. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Comisión Nacional de Energía Atómica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. - Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología; ArgentinaFil: de Biasi, Emilio. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Comisión Nacional de Energía Atómica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. - Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología; ArgentinaFil: Ramos, Carlos Alberto. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Comisión Nacional de Energía Atómica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. - Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología; ArgentinaFil: Goya, Gerardo Fabian. Universidad de Zaragoza; EspañaFil: Zysler, Roberto Daniel. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Comisión Nacional de Energía Atómica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. - Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología; ArgentinaFil: Lima, Enio Junior. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Comisión Nacional de Energía Atómica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. - Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología; Argentin

    Search for single production of vector-like quarks decaying into Wb in pp collisions at s=8\sqrt{s} = 8 TeV with the ATLAS detector

    Get PDF

    Measurement of the charge asymmetry in top-quark pair production in the lepton-plus-jets final state in pp collision data at s=8TeV\sqrt{s}=8\,\mathrm TeV{} with the ATLAS detector

    Get PDF

    ATLAS Run 1 searches for direct pair production of third-generation squarks at the Large Hadron Collider

    Get PDF

    Evidence for the presence of a novel Kv4-mediated A-type K+ channel-modifying factor

    No full text
    Subthreshold-operating transient (A-type) K+ currents (ISAs) are important in regulating neuronal firing frequency and in the modulation of incoming signals in dendrites. It is now known that Kv4 proteins are the principal, or pore-forming, subunits of the channels mediating ISAs. In addition, accessory subunits of Kv4 channels have also been identified. These either have no effect or slow down the inactivation kinetics of Kv4 channels. However, in many neuronal populations the ISA is faster, not slower, than the current generated by channels containing only Kv4 proteins.Evidence is presented for the presence in rat cerebellar mRNA of transcripts encoding a molecular factor, termed KAF, that accelerates the kinetics of Kv4 channels. Size-fractionation of cerebellar mRNA in sucrose gradients separated the high molecular weight mRNAs (4–7 kb) encoding KAF from the low molecular weight ones (1.5–3 kb) encoding factors that slow down the inactivation kinetics of Kv4 channels. The latter were identified as KChIPs using anti-KChIP antisense oligonucleotides.Both anti-KChIP and anti-Kv4 antisense oligonucleotides failed to eliminate KAF's activity from the high molecular weight mRNA fraction, thus suggesting that KAF might be a novel subunit(s) that can contribute to generating native ISA channel diversity.The time course of the currents expressed by KAF-modified Kv4 channels resembles more closely the time course of the native ISA in cerebellar granule cells

    The interplay of seven subthreshold conductances controls the resting membrane potential and the oscillatory behavior of thalamocortical neurons

    No full text
    The signaling properties of thalamocortical (TC) neurons depend on the diversity of ion conductance mechanisms that underlie their rich membrane behavior at subthreshold potentials. Using patch-clamp recordings of TC neurons in brain slices from mice and a realistic conductance-based computational model, we characterized seven subthreshold ion currents of TC neurons and quantified their individual contributions to the total steady-state conductance at levels below tonic firing threshold. We then used the TC neuron model to show that the resting membrane potential results from the interplay of several inward and outward currents over a background provided by the potassium and sodium leak currents. The steady-state conductances of depolarizing I(h) (hyperpolarization-activated cationic current), I(T) (low-threshold calcium current), and I(NaP) (persistent sodium current) move the membrane potential away from the reversal potential of the leak conductances. This depolarization is counteracted in turn by the hyperpolarizing steady-state current of I(A) (fast transient A-type potassium current) and I(Kir) (inwardly rectifying potassium current). Using the computational model, we have shown that single parameter variations compatible with physiological or pathological modulation promote burst firing periodicity. The balance between three amplifying variables (activation of I(T), activation of I(NaP), and activation of I(Kir)) and three recovering variables (inactivation of I(T), activation of I(A), and activation of I(h)) determines the propensity, or lack thereof, of repetitive burst firing of TC neurons. We also have determined the specific roles that each of these variables have during the intrinsic oscillation

    Kv4 Accessory Protein DPPX (DPP6) is a Critical Regulator of Membrane Excitability in Hippocampal CA1 Pyramidal Neurons

    No full text
    A-type K+ currents have unique kinetic and voltage-dependent properties that allow them to finely tune synaptic integration, action potential (AP) shape and firing patterns. In hippocampal CA1 pyramidal neurons, Kv4 channels make up the majority of the somatodendritic A-type current. Studies in heterologous expression systems have shown that Kv4 channels interact with transmembrane dipeptidyl-peptidase-like proteins (DPPLs) to regulate the surface trafficking and biophysical properties of Kv4 channels. To investigate the influence of DPPLs in a native system, we conducted voltage-clamp experiments in patches from CA1 pyramidal neurons expressing short-interfering RNA (siRNA) targeting the DPPL variant known to be expressed in hippocampal pyramidal neurons, DPPX (siDPPX). In accordance with heterologous studies, we found that DPPX downregulation in neurons resulted in depolarizing shifts of the steady-state inactivation and activation curves, a shallower conductance-voltage slope, slowed inactivation, and a delayed recovery from inactivation for A-type currents. We carried out current-clamp experiments to determine the physiological effect of the A-type current modifications by DPPX. Neurons expressing siDPPX exhibited a surprisingly large reduction in subthreshold excitability as measured by a decrease in input resistance, delayed time to AP onset, and an increased AP threshold. Suprathreshold DPPX downregulation resulted in slower AP rise and weaker repolarization. Computer simulations supported our experimental results and demonstrated how DPPX remodeling of A-channel properties can result in opposing sub- and suprathreshold effects on excitability. The Kv4 auxiliary subunit DPPX thus acts to increase neuronal responsiveness and enhance signal precision by advancing AP initiation and accelerating both the rise and repolarization of APs
    corecore