83 research outputs found

    Hartle-Hawking state is a maximum of entanglement entropy

    Get PDF
    It is shown that the Hartle-Hawking state of a scalar field is a maximum of entanglement entropy in the space of pure quantum states satisfying the condition that backreaction is finite. In other words, the Hartle-Hawking state is a curved-space analogue of the EPR state, which is also a maximum of entanglement entropy.Comment: Latex, 4 pages, Some comments are added on the "small backreaction condition

    The Mycoplasma pneumoniae MPN229 gene encodes a protein that selectively binds single-stranded DNA and stimulates Recombinase A-mediated DNA strand exchange

    Get PDF
    Background. Mycoplasma pneumoniae has previously been characterized as a micro-organism that is genetically highly stable. In spite of this genetic stability, homologous DNA recombination has been hypothesized to lie at the basis of antigenic variation of the major surface protein, P1, of M. pneumoniae. In order to identify the proteins that may be involved in homologous DNA recombination in M. pneumoniae, we set out to characterize the MPN229 open reading frame (ORF), which bears sequence similarity to the gene encoding the single-stranded DNA-binding (SSB) protein of other micro-organisms. Results. The MPN229 ORF has the capacity to encode a 166-amino acid protein with a calculated molecular mass of 18.4 kDa. The amino acid sequence of this protein (Mpn SSB) is most closely related to that of the protein predicted to be encoded by the MG091 gene from Mycoplasma genitalium (61% identity). The MPN229 ORF was cloned, and different versions of Mpn SSB were expressed in E. coli and purified to > 95% homogeneity. The purified protein was found to exist primarily as a homo-tetramer in solution, and to strongly and selectively bind single-stranded DNA (ssDNA) in a divalent cation- and DNA substrate sequence-independent manner. Mpn SSB was found to bind with a higher affinity to ssDNA substrates larger than 20 nucleotides than to smaller substrates. In addition, the protein strongly stimulated E. coli Recombinase A (RecA)-promoted DNA strand exchange, which indicated that Mpn SSB may play an important role in DNA recombination processes in M. pneumoniae. Conclusion. The M. pneumoniae MPN229 gene encodes a protein, Mpn SSB, which selectively and efficiently binds ssDNA, and stimulates E. coli RecA-promoted homologous DNA recombination. Consequently, the Mpn SSB protein may play a crucial role in DNA recombinatorial pathways in M. pneumoniae. The results from this study will pave the way for unraveling these pathways and assess their role in antigenic variation of M. pneumoniae

    Multidrug-resistant Streptococcus pneumoniae in Poland: identification of emerging clones

    Get PDF
    Penicillin resistance among Streptococcus pneumoniae isolates has rapidly emerged in Poland during the last decade and has reached prevalence levels of up to 14.4% in 1997. In order to investigate the nature of this increase, a molecular epidemiological analysis of non-penicillin-susceptible multidrug-resistant pneumococci isolated in 1995 and 1996 was conducted. Thirty-seven patients who suffered mainly from upper respiratory tract infections and pneumococcal pneumonia were enrolled in this study. The medical centers to which the patients were admitted were located in 16 Polish towns across the country. Eight distinct BOX PCR types were observed, representing 14 subtypes. Restriction fragment end labeling (RFEL) analysis divided the pneumococcal strains into 16 distinct types. By combining the BOX PCR and RFEL data, four genetically distinct clusters of strains were identified. Two clusters represented the genetic clones 23F and 9V, which have recently emerged all over the world. The two other genetic clusters, which represented serotypes 23F and 6B, clearly predominated in the analyzed collection of Polish non-penicillin-susceptible pneumococcal strains. Since the latter clusters did not match any of the 133 RFEL types of non-penicillin-susceptible pneumococci collected in 15 other countries, their Polish clonal origin is most likely

    Liquefaction Characteristics of Sand as Studied by Cyclic Torsional Testing Using Hollow Cylinder Apparatus

    Get PDF
    The DNA recombination and repair machineries of Mycoplasma genitalium and Mycoplasma pneumoniae differ considerably from those of gram-positive and gram-negative bacteria. Most notably, M. pneumoniae is unable to express a functional RecU Holliday junction (HJ) resolvase. In addition, the RuvB homologues from both M. pneumoniae and M. genitalium only exhibit DNA helicase activity but not HJ branch migration activity in vitro. To identify a putative role of the RuvA homologues of these mycoplasmas in DNA recombination, both proteins (RuvA(Mpn) and RuvA(Mge), respectively) were studied for their ability to bind DNA and to interact with RuvB and RecU. In spite of a high level of sequence conservation between RuvA(Mpn) and RuvA(Mge) (68.8% identity), substantial differences were found between these proteins in their activities. First, RuvA(Mge) was found to preferentially bind to HJs, whereas RuvA(Mpn) displayed similar affinities for both HJs and single-stranded DNA. Second, while RuvA(Mpn) is able to form two distinct complexes with HJs, RuvA(Mge) only produced a single HJ complex. Third, RuvA(Mge) stimulated the DNA helicase and ATPase activities of RuvB(Mge), whereas RuvA(Mpn) did not augment RuvB activity. Finally, while both RuvA(Mge) and RecU(Mge) efficiently bind to HJs, they did not compete with each other for HJ binding, but formed stable complexes with HJs over a wide protein concentration range. This interaction, however, resulted in inhibition of the HJ resolution activity of RecU(Mge)

    The putative proteinase maturation protein A of Streptococcus pneumoniae is a conserved surface protein with potential to elicit protective immune responses

    Get PDF
    Surface-exposed proteins often play an important role in the interaction between pathogenic bacteria and their host. We isolated a pool of hydrophobic, surface-associated proteins of Streptococcus pneumoniae. The opsonophagocytic activity of hyperimmune serum raised against this protein fraction was high and species specific. Moreover, the opsonophagocytic activity was independent of the capsular type and chromosomal genotype of the pneumococcus. Since the opsonophagocytic activity is presumed to correlate with in vivo protection, these data indicate that the protein fraction has the potential to elicit species-specific immune protection with cross-protection against various pneumococcal strains. Individual proteins in the extract were purified by two-dimensional gel electrophoresis. Antibodies raised against three distinct proteins contributed to the opsonophagocytic activity of the serum. The proteins were identified by mass spectrometry and N-terminal amino acid sequencing. Two proteins were the previously characterized pneumococcal surface protein A and oligopeptide-binding lipoprotein AmiA. The third protein was the recently identified putative proteinase maturation protein A (PpmA), which showed homology to members of the family of peptidyl-prolyl cis/trans isomerases. Immunoelectron microscopy demonstrated that PpmA was associated with the pneumococcal surface. In addition, PpmA was shown to elicit species-specific opsonophagocytic antibodies that were cross-reactive with various pneumococcal strains. This antibody cross-reactivity was in line with the limited sequence variation of ppmA. The importance of PpmA in pneumococcal pathogenesis was demonstrated in a mouse pneumonia model. Pneumococcal ppmA-deficient mutants showed reduced virulence. The properties of PpmA reported here indicate its potential for inclusion in multicomponent protein vaccines
    • โ€ฆ
    corecore