22 research outputs found

    Trimellitic anhydride-conjugated serum albumin activates rat alveolar macrophages in vitro

    Get PDF
    BACKGROUND: Occupational exposure to airborne low molecular weight chemicals, like trimellitic anhydride (TMA), can result in occupational asthma. Alveolar macrophages (AMs) are among the first cells to encounter these inhaled compounds and were previously shown to influence TMA-induced asthma-like symptoms in the Brown Norway rat. TMA is a hapten that will bind to endogenous proteins upon entrance of the body. Therefore, in the present study we determined if TMA and TMA conjugated to serum albumin induced the production of the macrophage mediators nitric oxide (NO), tumour necrosis factor (TNF), and interleukin 6 (IL-6) in vitro using the rat AM cell line NR8383 and primary AMs derived from TMA-sensitized and naïve Brown Norway rats. METHODS: Cells were incubated with different concentrations of TMA, TMA conjugated to bovine serum albumin (BSA), and BSA as a control for 24 h and the culture supernatant was analyzed for mediator content. RESULTS: TMA alone was not able to induce the production of mediators by NR8383 cells and primary AMs from sensitized and sham-treated rats. TMA-BSA, on the contrary, dose-dependently stimulated the production of NO, TNF, and IL-6 by NR8383 cells and of NO and TNF, but not IL-6, by primary AMs independent of sensitization. CONCLUSION: Results suggest that although TMA is a highly reactive compound, conjugation to a suitable protein is necessary to induce mediator production by AMs. Furthermore, the observation that effects of TMA-BSA were independent of sensitization suggests involvement of an immunologically non-specific receptor. In the discussion it is argued that a macrophage scavenger receptor is a likely candidate

    Influencing mucosal homeostasis and immune responsiveness:The impact of nutrition and pharmaceuticals

    No full text
    Both nutrition and orally ingested drugs pass the gastrointestinal mucosa and may affect the balance between the mucosal immune system and microbial community herein, i.e. affecting composition of the microbial community as well as the status of local immune system that controls microbial composition and maintains mucosal integrity. Numerous ways are known by which the microbial community stimulates mammalian host's immune system and vice versa. The communication between microbiota and immune system is principally mediated by interaction of bacterial components with pattern recognition receptors expressed by intestinal epithelium and various local antigen-presenting cells, resulting in activation or modulation of both innate and adaptive immune responses. Current review describes some of the factors influencing development and maintenance of a proper mucosal/immune balance, with special attention to Toll like receptor signaling and regulatory T cell development. It further describes examples (antibiotic use, HIV and asthma will be discussed) showing that disruption of the balance can be linked to immune function failure. The therapeutic potential of nutritional pharmacology herein is the main focus of discussion. (C) 2011 Elsevier B.V. All rights reserved

    Bordetella pertussis induces IFN-γ production by NK cells resulting in chemo-attraction by respiratory epithelial cells.

    No full text
    BACKGROUND: Whooping cough is caused by infection of the airways with Bordetella pertussis (Bp). As interferon gamma (IFN-γ) is essential for protective immunity against Bp, we investigated how IFN-γ is induced by Bp or the virulence antigens filamentous hemagglutinin adhesin, pertactin, or pertussis toxin, and how IFN-γ contributes to local immune responses in humans. METHODS: Peripheral blood mononuclear cells (PBMCs) from healthy donors and/or respiratory epithelial cells were stimulated with soluble antigens or inactivated intact Bp and the presence or absence of blocking antibodies or chemokines. Supernatants and cells were analyzed for IFN-γ and chemokine production, and lymphocyte migration was tested using epithelial supernatants. RESULTS: The soluble antigens failed to induce IFN-γ production, whereas inactivated Bp induced IFN-γ production. Natural killer (NK) cells were the main source of IFN-γ production, which was enhanced by interleukin 15. Epithelial–PBMC co-cultures showed robust IFN-γ–dependent CXCL9 and CXCL10 production by the epithelial cells following stimulation with IFN-γ and Bp. The epithelial-derived chemokines resulted in CXCR3-dependent recruitment of NK and T cells. CONCLUSIONS: Inactivated Bp, but not antigens, induced potent IFN-γ production by NK cells, resulting in chemoattraction of lymphocytes toward the respiratory epithelium. These data provide insight into the requirements for IFN-γ production and how IFN-γ enhances local immune responses to prevent Bp-mediated disease

    Local innate and adaptive immune responses regulate inflammatory cell influx into the lungs after vaccination with formalin inactivated RSV

    No full text
    Inactivated respiratory syncytial virus (RSV) vaccines tend to predispose for immune mediated enhanced disease, characterized by Th2 responses and airway hypersensitivity reactions. We show in a C57BL/6 mouse model that the early innate response elicited by the challenge virus (RSV versus influenza virus) influences the outcome of the Th1/Th2 balance in the lung after intramuscular priming with inactivated vaccine. Priming of CD4(+)/IFN-gamma(+) T cells by mature dendritic cells administered intravenously and/or priming of a virus specific CD8(+) T cell response ameliorated the Th2-mediated inflammatory response in the lung, suggesting that vaccination procedures are feasible that prevent vaccine induced immune pathology. (C) 2011 Elsevier Ltd. All rights reserved

    Alterations in regulatory T cells induced by specific oligosaccharides improve vaccine responsiveness in mice.

    Get PDF
    UnlabelledProphylactic vaccinations are generally performed to protect naïve individuals with or without suppressed immune responsiveness. In a mouse model for Influenza vaccinations the specific alterations of CD4(+)CD25(+)Foxp3(+) regulatory T-cells (Tregs) in the immune modulation induced by orally supplied oligosaccharides containing scGOS/lcFOS/pAOS was assessed. This dietary intervention increased vaccine specific DTH responses. In addition, a significant increased percentage of T-bet(+) (Th1) activated CD69(+)CD4(+) T cells (pIn conclusionThese data are indicative for improved vaccine responsiveness due to reduced Th1 suppressive capacity in the Treg population of mice fed the oligosaccharide specific diet, showing compartmentalization within the Treg population. The modulation of Tregs to control immune responses provides an additional arm of intervention using alternative strategies possibly leading to the development of improved vaccines

    Respiratory Syncytial Virus Induced Type I IFN Production by pDC Is Regulated by RSV-Infected Airway Epithelial Cells, RSV-Exposed Monocytes and Virus Specific Antibodies

    No full text
    <div><p>Innate immune responses elicited upon virus exposure are crucial for the effective eradication of viruses, the onset of adaptive immune responses and for establishing proper immune memory. Respiratory syncytial virus (RSV) is responsible for a high disease burden in neonates and immune compromised individuals, causing severe lower respiratory tract infections. During primary infections exuberant innate immune responses may contribute to disease severity. Furthermore, immune memory is often insufficient to protect during RSV re-exposure, which results in frequent symptomatic reinfections. Therefore, identifying the cell types and pattern recognition receptors (PRRs) involved in RSV-specific innate immune responses is necessary to understand incomplete immunity against RSV. We investigated the innate cellular response triggered upon infection of epithelial cells and peripheral blood mononuclear cells. We show that CD14<sup>+</sup> myeloid cells and epithelial cells are the major source of IL-8 and inflammatory cytokines, IL-6 and TNF-α, when exposed to live RSV Three routes of RSV-induced IFN-α production can be distinguished that depend on the cross-talk of different cell types and the presence or absence of virus specific antibodies, whereby pDC are the ultimate source of IFN-α. RSV-specific antibodies facilitate direct TLR7 access into endosomal compartments, while in the absence of antibodies, infection of monocytes or epithelial cells is necessary to provide an early source of type I interferons, required to engage the IFN-α,β receptor (IFNAR)-mediated pathway of IFN-α production by pDC. However, at high pDC density infection with RSV causes IFN-α production without the need for a second party cell. Our study shows that cellular context and immune status are factors affecting innate immune responses to RSV. These issues should therefore be addressed during the process of vaccine development and other interventions for RSV disease.</p> </div

    Treg population in MLN is influenced by the dietary intervention.

    No full text
    <p>Cells from MLNs were isolated from mice (n = 7 per group) receiving either placebo or scGOS/lcFOS/pAOS and were labeled with CD4/Foxp3 in combination with CXCR3, T-bet, for flowcytometric analysis (A). Lines represent mean percentages of Tregs in total (CD4<sup>+</sup>Foxp3<sup>+</sup> T cells) (B), and sub-populations of Tregs including % of CXCR3 <sup>+</sup> /T-bet<sup>+</sup> Tregs (C) In addition, individual measurements are indicated through separate dots. Data presented is representative for 3 individual experiments. Statistically significant differences between the groups are indicated in the graphs.</p

    Activated CD4<sup>+</sup> T-cells are modulated towards Th1 type of immune responsiveness.

    No full text
    <p>MLN cells were isolated from mice (n = 7 per group) receiving either placebo or scGOS/lcFOS/pAOS and were labeled with CD4/CD69/T-bet/Gata-3 flowcytometric analysis. The characterization of different cell populations is indicated in the gating strategy (A). Lines represent mean CD4<sup>+</sup> T cells % (B), activated CD69<sup>+</sup>CD4<sup>+</sup> T cells % (C) % of T-bet<sup>+</sup> activated T-cells (D) and % of Gata-3<sup>+</sup> activated T cells (E). In addition, individual measurements are indicated through separate dots. Data presented is representative for 3 individual experiments. Statistically significant differences between the groups are indicated in the graphs.</p
    corecore