8 research outputs found

    A Forward Genetic Screen Reveals Novel Independent Regulators of Ulbp1, an Activating Ligand for Natural Killer Cells

    Get PDF
    Recognition and elimination of tumor cells by the immune system is crucial for limiting tumor growth. Natural killer (NK) cells become activated when the receptor NKG2D is engaged by ligands that are frequently upregulated in primary tumors and on cancer cell lines. However, the molecular mechanisms driving NKG2D ligand expression on tumor cells are not well defined. Using a forward genetic screen in a tumor-derived human cell line, we identified several novel factors supporting expression of the NKG2D ligand ULBP1. Our results show stepwise contributions of independent pathways working at multiple stages of ULBP1 biogenesis. Deeper investigation of selected hits from the screen showed that the transcription factor ATF4 drives ULBP1 gene expression in cancer cell lines, while the RNA-binding protein RBM4 supports ULBP1 expression by suppressing a novel alternatively spliced isoform of ULBP1 mRNA. These findings offer insight into the stress pathways that alert the immune system to danger

    Novel neutralizing monoclonal antibodies protect rodents against lethal filovirus challenges

    Get PDF
    Filoviruses are the causative agents of lethal hemorrhagic fever in human and non-human primates (NHP). The family of Filoviridae is composed of three genera, Ebolavirus, Marburgvirus and Cuevavirus. There are currently no approved vaccines or antiviral therapeutics for the treatment of filovirus infections in humans. Passive transfer of neutralizing antibodies targeting the Ebola virus (EBOV) glycoprotein (GP) has proven effective in protecting mice, guinea pigs and NHP from lethal challenges with EBOV. In this study, we generated two neutralizing monoclonal antibodies (MAbs), termed S9 and M4 that recognize the GP of EBOV or multiple strains of Marburg virus (MARV), respectively. We characterized the putative binding site of S9 as a linear epitope on the glycan cap of the GP1 subunit of the EBOV-GP. The M4 antibody recognizes an unknown conformational epitope on MARV-GP. Additionally, we demonstrated the post-exposure protection potential of these antibodies in both the mouse and guinea pig models of filovirus infection. These data indicate that MAbs S9 and M4 would be good candidates for inclusion in an antibody cocktail for the treatment of filovirus infections

    Differential Virus Host-Ranges of the \u3ci\u3eFuselloviridae\u3c/i\u3e of Hyperthermophilic Archaea: Implications for Evolution in Extreme Environments

    Get PDF
    An emerging model for investigating virus-host interactions in hyperthermophilic Archaea is the Fusellovirus-Sulfolobus system. The host, Sulfolobus, is a hyperthermophilic acidophile endemic to sulfuric hot springs worldwide. The Fuselloviruses, also known as Sulfolobus Spindle-shaped Viruses (SSVs), are lemon or spindle -shaped double-stranded DNA viruses, which are also found worldwide. Although a few studies have addressed the host-range for the type virus, Sulfolobus Spindle-shaped Virus 1 (SSV1), using common Sulfolobus strains, a comprehensive host-range study for SSV-Sulfolobus systems has not been performed. Herein, we examine six bona fide SSV strains (SSV1, SSV2, SSV3, SSVL1, SSVK1, SSVRH) and their respective infection characteristics on multiple hosts from the family Sulfolobaceae. A spot-on-lawn or halo assay was employed to determine SSV infectivity (and host susceptibility) in parallel challenges of multiple SSVs on a lawn of a single Sulfolobus strain. Different SSVs have different host-ranges with SSV1 exhibiting the narrowest host-range and SSVRH exhibiting the broadest host range. In contrast to previous reports, SSVs can infect hosts beyond the genus Sulfolobus. Furthermore, geography does not appear to be a reliable predictor of Sulfolobus susceptibility to infection by any given SSV. The ability for SSVs to infect susceptible Sulfolobus host does not appear to change between 65°C and 88°C (physiological range); however, very low pH appears to influence infection. Lastly, for the virus-host pairs tested the Fusellovirus-Sulfolobus system appears to exhibit host-advantage. This work provides a foundation for understanding Fusellovirus biology and virus-host coevolution in extreme ecosystems

    Differential Virus Host-Ranges of the Fuselloviridae of Hyperthermophilic Archaea: Implications for Evolution in Extreme Environments

    Get PDF
    An emerging model for investigating virus-host interactions in hyperthermophilic Archaea is the Fusellovirus-Sulfolobus system. The host, Sulfolobus, is a hyperthermophilic acidophile endemic to sulfuric volcanic-driven hot springs worldwide. The Fuselloviruses, also known as Sulfolobus Spindle-shaped Viruses (SSVs), are lemon or spindle shaped double-stranded DNA viruses that are also found worldwide. Although a few studies have addressed the host-range for the type virus, SSV1, using common Sulfolobus strains, a comprehensive host-range study for SSV-Sulfolobus systems has not been performed. Herein, we examine six bona fide SSV strains (SSV1, SSV2, SSV3, SSVL1, SSVK1, SSVRH) and their respective infection characteristics on multiple hosts from the family Sulfolobaceae. A halo assay was used to determine virus infectivity and host susceptibility. Different SSV strains have different host-ranges with SSV1 exhibiting the narrowest host-range and SSVRH exhibiting the broadest host range. There is no correlation between geographic separation of viruses and their hosts and their relative infectivity and susceptibility. In contrast to previous reports, SSVs can infect hosts beyond the genus Sulfolobus. Furthermore, the Fusellovirus-Sulfolobus system appears to exhibit host-advantage. This work provides a foundation for understanding Fusellovirus biology and virus-host co-evolution in extreme ecosystems, a rapidly emerging field of study

    A Small-Molecule Oligosaccharyltransferase Inhibitor with Pan-flaviviral Activity

    No full text
    The mosquito-borne flaviviruses include important human pathogens such as dengue, Zika, West Nile, and yellow fever viruses, which pose a serious threat for global health. Recent genetic screens identified endoplasmic reticulum (ER)-membrane multiprotein complexes, including the oligosaccharyltransferase (OST) complex, as critical flavivirus host factors. Here, we show that a chemical modulator of the OST complex termed NGI-1 has promising antiviral activity against flavivirus infections. We demonstrate that NGI-1 blocks viral RNA replication and that antiviral activity does not depend on inhibition of the N-glycosylation function of the OST. Viral mutants adapted to replicate in cells deficient of the OST complex showed resistance to NGI-1 treatment, reinforcing the on-target activity of NGI-1. Lastly, we show that NGI-1 also has strong antiviral activity in primary and disease-relevant cell types. This study provides an example for advancing from the identification of genetic determinants of infection to a host-directed antiviral compound with broad activity against flaviviruses

    Identification of the Cell-Surface Protease ADAM9 as an Entry Factor for Encephalomyocarditis Virus

    No full text
    Encephalomyocarditis virus (EMCV) is an animal pathogen and an important model organism, whose receptor requirements are poorly understood. Here, we employed a genome-wide haploid genetic screen to identify novel EMCV host factors. In addition to the previously described picornavirus receptors sialic acid and glycosaminoglycans, this screen unveiled important new host factors for EMCV. These factors include components of the fibroblast growth factor (FGF) signaling pathway, such as the potential receptors FGFR1 and ADAM9, a cell-surface metalloproteinase. By employing various knockout cells, we confirmed the importance of the identified host factors for EMCV infection. The largest reduction in infection efficiency was observed in cells lacking ADAM9. Pharmacological inhibition of the metalloproteinase activity of ADAM9 did not affect virus infection. Moreover, reconstitution of inactive ADAM9 in knockout cells restored susceptibility to EMCV, pointing to a proteinase-independent role of ADAM9 in mediating EMCV infection. Using neutralization assays with ADAM9-specific antiserum and soluble receptor proteins, we provided evidence for a role of ADAM9 in EMCV entry. Finally, binding assays showed that ADAM9 facilitates attachment of EMCV to the cell surface. Together, our findings reveal a role for ADAM9 as a novel receptor or cofactor for EMCV.IMPORTANCE EMCV is an animal pathogen that causes acute viral infections, usually myocarditis or encephalitis. It is thought to circulate mainly among rodents, from which it is occasionally transmitted to other animal species, including humans. EMCV causes fatal outbreaks of myocarditis and encephalitis in pig farms and zoos, making it an important veterinary pathogen. Although EMCV has been widely used as a model to study mechanisms of viral disease in mice, little is known about its entry mechanism. Here, we employ a haploid genetic screen for EMCV host factors and identify an essential role for ADAM9 in EMCV entry

    A forward genetic screen reveals novel independent regulators of ULBP1, an activating ligand for natural killer cells.

    Get PDF
    Recognition and elimination of tumor cells by the immune system is crucial for limiting tumor growth. Natural killer (NK) cells become activated when the receptor NKG2D is engaged by ligands that are frequently upregulated in primary tumors and on cancer cell lines. However, the molecular mechanisms driving NKG2D ligand expression on tumor cells are not well defined. Using a forward genetic screen in a tumor-derived human cell line, we identified several novel factors supporting expression of the NKG2D ligand ULBP1. Our results show stepwise contributions of independent pathways working at multiple stages of ULBP1 biogenesis. Deeper investigation of selected hits from the screen showed that the transcription factor ATF4 drives ULBP1 gene expression in cancer cell lines, while the RNA-binding protein RBM4 supports ULBP1 expression by suppressing a novel alternatively spliced isoform of ULBP1 mRNA. These findings offer insight into the stress pathways that alert the immune system to danger

    The adherens junctions control susceptibility to Staphylococcus aureus

    No full text
    Staphylococcus aureus is both a transient skin colonizer and a formidable human pathogen, ranking among the leading causes of skin and soft tissue infections as well as severe pneumonia. The secreted bacterial α-toxin is essential for S. aureus virulence in these epithelial diseases. To discover host cellular factors required for α-toxin cytotoxicity, we conducted a genetic screen using mutagenized haploid human cells. Our screen identified a cytoplasmic member of the adherens junctions, plekstrin-homology domain containing protein 7 (PLEKHA7), as the second most significantly enriched gene after the known α-toxin receptor, a disintegrin and metalloprotease 10 (ADAM10). Here we report a new, unexpected role for PLEKHA7 and several components of cellular adherens junctions in controlling susceptibility to S. aureus α-toxin. We find that despite being injured by α-toxin pore formation, PLEKHA7 knockout cells recover after intoxication. By infecting PLEKHA7(−/−) mice with methicillin-resistant S. aureus USA300 LAC strain, we demonstrate that this junctional protein controls disease severity in both skin infection and lethal S. aureus pneumonia. Our results suggest that adherens junctions actively control cellular responses to a potent pore-forming bacterial toxin and identify PLEKHA7 as a potential nonessential host target to reduce S. aureus virulence during epithelial infections
    corecore