28 research outputs found

    Virtual micromagnetics: a framework for accessible and reproducible micromagnetic simulation

    No full text
    Computational micromagnetics requires numerical solution of partial differential equations to resolve complex interactions in magnetic nanomaterials. The Virtual Micromagnetics project described here provides virtual machine simulation environments to run open-source micromagnetic simulation packages [1]. These environments allow easy access to simulation packages that are often difficult to compile and install, and enable simulations and their data to be shared and stored in a single virtual hard disk file, which encourages reproducible research. Virtual Micromagnetics can be extended to automate the installation of micromagnetic simulation packages on non-virtual machines, and to support closed-source and new open-source simulation packages, including packages from disciplines other than micromagnetics, encouraging reuse. Virtual Micromagnetics is stored in a public GitHub repository under a three-clause Berkeley Software Distribution (BSD) license

    Frequency-based nanoparticle sensing over large field ranges using the ferromagnetic resonances of a magnetic nanodisc

    Full text link
    Using finite element micromagnetic simulations, we study how resonant magnetisation dynamics in thin magnetic discs with perpendicular anisotropy are influenced by magnetostatic coupling to a magnetic nanoparticle. We identify resonant modes within the disc using direct magnetic eigenmode calculations and study how their frequencies and profiles are changed by the nanoparticle's stray magnetic field. We demonstrate that particles can generate shifts in the resonant frequency of the disc's fundamental mode which exceed resonance linewidths in recently studied spin torque oscillator devices. Importantly, it is shown that the simulated shifts can be maintained over large field ranges (here up to 1T). This is because the resonant dynamics (the basis of nanoparticle detection here) respond directly to the nanoparticle stray field, i.e. detection does not rely on nanoparticle-induced changes to the magnetic ground state of the disk. A consequence of this is that in the case of small disc-particle separations, sensitivities to the particle are highly mode- and particle-position-dependent, with frequency shifts being maximised when the intense stray field localised directly beneath the particle can act on a large proportion of the disc's spins that are undergoing high amplitude precession.Comment: 9 pages, 9 figures. Updated version from 31.7.2016 includes minor changes in introduction and sections III.C and III.D (additional information linking the results to real-world bio-sensing devices

    Magnon-Driven Domain-Wall Motion with the Dzyaloshinskii-Moriya Interaction

    Full text link
    We study domain wall (DW) motion induced by spin waves (magnons) in the presence of Dzyaloshinskii-Moriya interaction (DMI). The DMI exerts a torque on the DW when spin waves pass through the DW, and this torque represents a linear momentum exchange between the spin wave and the DW. Unlike angular momentum exchange between the DW and spin waves, linear momentum exchange leads to a rotation of the DW plane rather than a linear motion. In the presence of an effective easy plane anisotropy, this DMI induced linear momentum transfer mechanism is significantly more efficient than angular momentum transfer in moving the DW

    Hysteresis of nanocylinders with Dzyaloshinskii-Moriya interaction

    Full text link
    The potential for application of magnetic skyrmions in high density storage devices provides a strong drive to investigate and exploit their stability and manipulability. Through a three-dimensional micromagnetic hysteresis study, we investigate the question of existence of skyrmions in cylindrical nanostructures of variable thickness. We quantify the applied field and thickness dependence of skyrmion states, and show that these states can be accessed through relevant practical hysteresis loop measurement protocols. As skyrmionic states have yet to be observed experimentally in confined helimagnetic geometries, our work opens prospects for developing viable hysteresis process-based methodologies to access and observe skyrmionic states.Comment: 4 pages, 2 figure

    Thermal stability and topological protection of skyrmions in nanotracks

    Full text link
    Magnetic skyrmions are hailed as a potential technology for data storage and other data processing devices. However, their stability against thermal fluctuations is an open question that must be answered before skyrmion-based devices can be designed. In this work, we study paths in the energy landscape via which the transition between the skyrmion and the uniform state can occur in interfacial Dzyaloshinskii-Moriya finite-sized systems. We find three mechanisms the system can take in the process of skyrmion nucleation or destruction and identify that the transition facilitated by the boundary has a significantly lower energy barrier than the other energy paths. This clearly demonstrates the lack of the skyrmion topological protection in finite-sized magnetic systems. Overall, the energy barriers of the system under investigation are too small for storage applications at room temperature, but research into device materials, geometry and design may be able to address this

    Ground state search, hysteretic behaviour, and reversal mechanism of skyrmionic textures in confined helimagnetic nanostructures

    Get PDF
    Magnetic skyrmions have the potential to provide solutions for low-power, high-density data storage and processing. One of the major challenges in developing skyrmion-based devices is the skyrmions' magnetic stability in confined helimagnetic nanostructures. Through a systematic study of equilibrium states, using a full three-dimensional micromagnetic model including demagnetisation effects, we demonstrate that skyrmionic textures are the lowest energy states in helimagnetic thin film nanostructures at zero external magnetic field and in absence of magnetocrystalline anisotropy. We also report the regions of metastability for non-ground state equilibrium configurations. We show that bistable skyrmionic textures undergo hysteretic behaviour between two energetically equivalent skyrmionic states with different core orientation, even in absence of both magnetocrystalline and demagnetisation-based shape anisotropies, suggesting the existence of Dzyaloshinskii-Moriya-based shape anisotropy. Finally, we show that the skyrmionic texture core reversal dynamics is facilitated by the Bloch point occurrence and propagation.Comment: manuscript: 14 pages, 7 figures; supplementary information: 8 pages, 7 figure

    Phenomenological description of the nonlocal magnetization relaxation in magnonics, spintronics, and domain-wall dynamics

    Get PDF
    A phenomenological equation called Landau-Lifshitz-Baryakhtar (LLBar) equation, which could be viewed as the combination of Landau-Lifshitz (LL) equation and an extra "exchange damping" term, was derived by Baryakhtar using Onsager's relations. We interpret the origin of this "exchange damping" as nonlocal damping by linking it to the spin current pumping. The LLBar equation is investigated numerically and analytically for the spin wave decay and domain wall motion. Our results show that the lifetime and propagation length of short-wavelength magnons in the presence of nonlocal damping could be much smaller than those given by LL equation. Furthermore, we find that both the domain wall mobility and the Walker breakdown field are strongly influenced by the nonlocal damping.Comment: 10 pages, 6 figure

    Skyrmions in thin films with easy-plane magnetocrystalline anisotropy

    Full text link
    We demonstrate that chiral skyrmionic magnetization configurations can be found as the minimum energy state in B20 thin film materials with easy-plane magnetocrystalline anisotropy with an applied magnetic field perpendicular to the film plane. Our observations contradict results from prior analytical work, but are compatible with recent experimental investigations. The size of the observed skyrmions increases with the easy-plane magnetocrystalline anisotropy. We use a full micromagnetic model including demagnetization and a three-dimensional geometry to find local energy minimum (metastable) magnetization configurations using numerical damped time integration. We explore the phase space of the system and start simulations from a variety of initial magnetization configurations to present a systematic overview of anisotropy and magnetic field parameters for which skyrmions are metastable and global energy minimum (stable) states.Comment: 5 pages, 3 figure
    corecore