66 research outputs found

    Degeneration Effects of Thin-Film Sensors after Critical Load Conditions of Machine Components

    Get PDF
    In the context of intelligent components in industrial applications in the automotive, energy or construction sector, sensor monitoring is crucial for security issues and to avoid long and costly downtimes. This article discusses component-inherent thin-film sensors for this purpose, which, in contrast to conventional sensor technology, can be applied inseparably onto the component’s surface via sputtering, so that a maximum of information about the component’s condition can be generated, especially regarding deformation. This article examines whether the sensors can continue to generate reliable measurement data even after critical component loads have been applied. This extends their field of use concerning plastic deformation behavior. Therefore, any change in sensor properties is necessary for ongoing elastic strain measurements. These novel fundamentals are established for thin-film constantan strain gauges and platinum temperature sensors on steel substrates. In general, a k-factor decrease and an increase in the temperature coefficient of resistance with increasing plastic deformation could be observed until a sensor failure above 0.5% plastic deformation (constantan) occurred (1.3% for platinum). Knowing these values makes it possible to continue measuring elastic strains after critical load conditions on a machine component in terms of plastic deformation. Additionally, a method of sensor-data fusion for the clear determination of plastic deformation and temperature change is presented

    Detailed characterisation of batch-manufactured flexible micro-grinding tools for electrochemical assisted grinding of copper surfaces

    Get PDF
    Precision machining is becoming more and more important with the increasing demands on surface quality for various components. This applies, for example, to mirror components in micro-optics or cooling components in microelectronics. Copper is a frequently used material for this purpose, but its mechanical properties make it difficult to machine. In this study, a process strategy for finishing copper surfaces with batch-manufactured micro-grinding tools in an electrochemically assisted grinding process is demonstrated. The tool heads are manufactured from a polyimide-abrasive-suspension and silicon as a carrier substrate using microsystems technology. The matching shafts are milled from aluminium. The tools are then used on pure copper and oxidised copper surfaces. By using finer abrasives grains (1.6–2.4 µm instead of 4–6 µm) than previously, similar surface roughness values could be achieved (Ra = 0.09 ± 0.02 µm, Rz = 1.94 ± 0.73 µm) with the same grinding process. An optimised grinding process that combines the use of rough and fine tools, on the other hand, achieves significantly better surface finishes in just four grinding iterations (Ra = 0.02 ± 0.01 µm, Rz = 0.83 ± 0.21 µm). In order to achieve a further increase in surface quality, this optimised grinding process is combined with the anodic oxidation of the copper workpieces. The surface modification is done to increase the machinability of the surface by creating an oxide layer. This is confirmed by the results of scratch tests carried out, which showed less force acting on the tool during machining with the oxide layer than with a pure copper surface. To realise this within the machine tool, an electrochemical cell is shown that can be integrated into the machine so that the oxidation can be carried out immediately before the grinding process. The copper layers produced inside the electrochemical cell in the machine tool show similar characteristics to the samples produced outside. Processing the oxidised samples with the optimised grinding process led to a further reduction of about 17% in the Rz values (Ra = 0.03 ± 0.01 µm, Rz = 0.69 ± 0.20 µm). The combination of the shown grinding process and the integration of anodic oxidation within the machine tool for the surface modification of copper workpieces seems to be promising to achieve high surface finishes

    Development, Characterisation and High-Temperature Suitability of Thin-Film Strain Gauges Directly Deposited with a New Sputter Coating System

    Get PDF
    New sensor and sensor manufacturing technologies are identified as a key factor for a successful digitalisation and are therefore economically important for manufacturers and industry. To address various requirements, a new sputter coating system has been invented at the Institute of Micro Production Technology. It enables the deposition of sensor systems directly onto technical surfaces. Compared to commercially available systems, it has no spatial limitations concerning the maximum coatable component size. Moreover, it enables a simultaneous structuring of deposited layers. Within this paper, characterisation techniques, results and challenges concerning directly deposited thin film strain gauges with the new sputter coating system are presented. Constantan (CuNiMn 54/45/1) and NiCr 80/20 are used as sensor materials. The initial resistance, temperature coefficient of resistance and gauge factor/k-factor of quarter-bridge strain gauges are characterised. The influence of a protective layer on sensor behaviour and layer adhesion is investigated as well. Moreover, the temperature compensation quality of directly deposited half-bridge strain gauges is evaluated, optimised with an external trimming technology and benchmarked against commercial strain gauges. Finally, the suitability for high-temperature strain measurement is investigated. Results show a maximum operation temperature of at least 400 °C, which is above the current state-of-the-art of commercial foil-based metal strain gauges

    Nonevaporable getter-MEMS for generating UHV conditions in small volumina

    Get PDF
    The industrial use of quantum sensors requires further miniaturization of the experimental peripherals, i.e., the high vacuum chamber, laser technology, and control electronics. A central part of the high vacuum chamber is the maintenance of vacuum conditions. For this purpose, a prototype of a compact, i.e., miniaturized, ultrahigh vacuum pump in the form of a nonevaporable getter (NEG) pump at a wafer level (MEMS), is developed within the scope of this work. With regard to the basic conditions of the functionality of the NEG, a miniaturized heating plate with temperature sensors is analytically and numerically developed, constructed, and characterized in an ultrahigh vacuum test stand. This is followed by the integration of the NEG into the existing system, which, in connection with the characterization of material-specific parameters, enables a first correlation of heat input and pumping power. Thus, performance data of the getter-MEMS under high-vacuum confinement confirm its usability for quantum sensors. In addition, optimization potentials are shown with regard to all partial aspects of the MEMS

    Flexibel und druckempfindlich : Sensoren fĂĽr die InsertionsĂĽberwachung in der Cochlea

    Get PDF
    Das Einsetzen eines Cochlea-Implantats in die Hörschnecke ist eine komplizierte Operation, die nicht immer ohne Schädigung des empfindlichen Gewebes einhergeht. Forschungsarbeiten am Institut für Mikroproduktionstechnik (IMPT) konzentrieren sich deswegen auf die Entwicklung einer Sensorik im Implantat, die dem Chirurgen während des Eingriffs helfen soll, Verletzungen zu vermeiden

    Grinding of riblets with "beaver tooth" multi-layer tools

    Get PDF
    To reduce friction in turbo machinery components, riblets are induced on compressor blades or pump impellers. Here, the grinding process enables a higher productivity in machining of riblet structures compared to knurling, laser or milling operations. Usually, profiled grinding tools are used to create such structures inspired by sharkskin. Unfortunately, conventional grinding tools have to be dressed continuously to keep the desired profile in the circumferential surface. To avoid the time-consuming dressing process and to enable a self-sharpening effect, an innovative multi-layer tool concept is developed. The tool consists of two types of thin polyimide layers. The first type contains abrasives and the second is a support layer without abrasives. These layers are piled alternately in a special manufacturing process and act like a monolithic tool in grinding process. The aim of the investigations presented in this paper is to find an optimal parameter setting to produce riblet structures productively by using the self-sharpening effect. The optimal setting allows a grinding process without any dressing process by using a large part of the grinding tool volume. At first, the manufacturing process is focused to create clearly divided support and abrasive layers of the grinding tool. Furthermore, the investigation shows the relationship between grinding parameters and the setback of the supporting layer in the middle of the tool. This setback is important for the creation of riblet structures in the surface of AISI 420 workpieces

    Impact of surface texture on ultrasonic wire bonding process

    Get PDF
    Due to the complex mechanisms, the ultrasonic (US) wire bonding process is usually optimized in the way of varying the processing parameters including normal force, US power, and processing time. In this study, a new way by creating different surface textures on substrates was used to alter the bonding process and improvements of the bonding process were detected. Three different surface textures including deposited strips, straight ditches at different angles, and elliptic ditches were designed and created on glass substrates. The results showed that the elliptic ditches hardly influence the bonding process while the deposited strips and straight ditches significantly alter the bonding process. The deposited strips help break the oxide scale and facilitate the transportation of oxides to the outside of contact. With the straight ditches, the oxide removal efficiency was significantly enhanced. Especially when the driving current exceeded 0.45 A, long chips from the ditches were clearly observed during the bonding process. The chips were aluminum and aluminum oxide which were continuously cut from the wire, accumulated in the ditches, pressed and squeezed to the outside of the contact. With a different angle of the straight ditches, the shape of the bonding footprint can be changed correspondingly. Compared to the bonding on smooth surfaces, the bonding strength on substrates with deposited strips and straight ditches was a few times higher and had a smaller deviation. The bonding process window was significantly enlarged

    Improved Microtransformer Design Utilizing Fe-Co Magnetic Core

    Get PDF
    This paper presents the design, fabrication, and characterization of on silicon integrated micro-transformers for high frequency power applications. This device has stable characteristic of L versus f up to frequencies higher as 50 MHz. The design is improved, so that the electrical resistance of coils is reduced and current capability is increased. The microtransformer shows an inductivity of about 50 nH, resistance of 350 mΩ and can be applied for current up to 1.5 A

    Process Development for Batch Production of Micro-Milling Tools Made of Silicon Carbide by Means of the Dry Etching Process

    Get PDF
    Downsized and complex micro-machining structures have to meet quality requirements concerning geometry and convince through increasing functionality. The development and use of cutting tools in the sub-millimeter range can meet these demands and contribute to the production of intelligent components in biomedical technology, optics or electronics. This article addresses the development of double-edged micro-cutters, which consist of a two-part system of cutter head and shaft. The cutting diameters are between 50 and 200 μm. The silicon carbide cutting heads are manufactured from the solid material using microsystem technology. The substrate used can be structured uniformly via photolithography, which means that 5200 homogeneous micro-milling heads can be produced simultaneously. This novel batch approach represents a contrast to conventionally manufactured micro-milling cutters. The imprint is taken by means of reactive ion etching using a mask made of electroplated nickel. Within this dry etching process, characteristic values such as the etch rate and flank angle of the structures are critical and will be compared in a parameter analysis. At optimal parameters, an anisotropy factor of 0.8 and an etching rate of 0.34 µm/min of the silicon carbide are generated. Finally, the milling heads are diced and joined. In the final machining tests, the functionality is investigated and any signs of wear are evaluated. A tool life of 1500 mm in various materials could be achieved. This and the milling quality achieved are in the range of conventional micro-milling cutters, which gives a positive outlook for further development

    Recent Developments of Magnetoresistive Sensors for Industrial Applications

    Get PDF
    The research and development in the field of magnetoresistive sensors has played an important role in the last few decades. Here, the authors give an introduction to the fundamentals of the anisotropic magnetoresistive (AMR) and the giant magnetoresistive (GMR) effect as well as an overview of various types of sensors in industrial applications. In addition, the authors present their recent work in this field, ranging from sensor systems fabricated on traditional substrate materials like silicon (Si), over new fabrication techniques for magnetoresistive sensors on flexible substrates for special applications, e.g., a flexible write head for component integrated data storage, micro-stamping of sensors on arbitrary surfaces or three dimensional sensing under extreme conditions (restricted mounting space in motor air gap, high temperatures during geothermal drilling).DFG/CRC/653German Federal Ministry of Education and Researc
    • …
    corecore