4 research outputs found

    Mobility and Poisoning of Mass-Selected Platinum Nanoclusters during the Oxygen Reduction Reaction

    Get PDF
    A major challenge in electrocatalysis is to understand the effect of electrochemical processes on the physicochemical properties of nanoparticle or nanocluster (NC) ensembles, especially for complex processes, such as the oxygen reduction reaction (ORR) considered herein. We describe an approach whereby electrocatalysis at a small number of well-defined mass-selected Pt NCs (Pt<sub>923±37</sub>, diameter, <i>d</i> ≈ 3 nm), deposited from a cluster beam source on carbon-coated transmission electron microscopy (TEM) grids, can be measured by a scanning electrochemical cell microscopy (SECCM) setup, in tandem with a range of complementary microscopy and spectroscopy techniques. The SECCM setup delivers high mass transport rates and allows the effects of transient reactive intermediates to be elucidated for different Pt surface coverages (NC spacing). A major observation is that the ORR activity decreases during successive electrochemical (voltammetric) measurements. This is shown to be due to poisoning of the Pt NCs by carbon-/oxygen-containing moieties that are produced by the reaction of reactive oxygen intermediates (RIs), generated by the ORR, with the carbon support. The effect is most prominent when the Pt surface coverage on the carbon support is low (<6%). Furthermore, the NC deposition impact energy drastically affects the resulting Pt NC stability during electrochemistry. For lower impact energy, Pt NCs migrate as a consequence of the ORR and are rearranged into characteristic groups on the support. This previously unseen effect is caused by an uneven flux distribution around individual NCs within the ensemble and has important consequences for understanding the stability and activity of NC and nanoparticle arrays

    Recrystallization of Highly-Mismatched Be<sub><i>x</i></sub>Zn<sub>1–<i>x</i></sub>O Alloys: Formation of a Degenerate Interface

    No full text
    We investigate the effect of thermally induced phase transformations on a metastable oxide alloy film, a multiphase Be<sub><i>x</i></sub>Zn<sub>1–<i>x</i></sub>O (BZO), grown on Al<sub>2</sub>O<sub>3</sub>(0001) substrate for annealing temperatures in the range of 600–950 °C. A pronounced structural transition is shown together with strain relaxation and atomic redistribution in the annealed films. Increasing annealing temperature initiates out-diffusion and segregation of Be and subsequent nucleation of nanoparticles at the surface, corresponding to a monotonic decrease in the lattice phonon energies and band gap energy of the films. Infrared reflectance simulations identify a highly conductive ZnO interface layer (thicknesses in the range of ≈10–29 nm for annealing temperatures ≥800 °C). The highly degenerate interface layers with temperature-independent carrier concentration and mobility significantly influence the electronic and optical properties of the BZO films. A parallel conduction model is employed to determine the carrier concentration and conductivity of the bulk and interface regions. The density-of-states-averaged effective mass of the conduction electrons for the interfaces is calculated to be in the range of 0.31<i>m</i><sub>0</sub> and 0.67<i>m</i><sub>0</sub>. A conductivity as high as 1.4 × 10<sup>3</sup> S·cm<sup>–1</sup> is attained, corresponding to the carrier concentration <i>n</i><sub>Int</sub> = 2.16 × 10<sup>20</sup> cm<sup>–3</sup> at the interface layers, and comparable to the highest conductivities achieved in highly doped ZnO. The origin of such a nanoscale degenerate interface layer is attributed to the counter-diffusion of Be and Zn, rendering a high accumulation of Zn interstitials and a giant reduction of charge-compensating defects. These observations provide a broad understanding of the thermodynamics and phase transformations in Be<sub><i>x</i></sub>Zn<sub>1–<i>x</i></sub>O alloys for the application of highly conductive and transparent oxide-based devices and fabrication of their alloy nanostructures

    Universality of hair as a nucleant: exploring the effects of surface chemistry and topography

    No full text
    The ability to control crystal nucleation through the simple addition of a nucleating agent (nucleant) is desirable for a huge range of applications. However, effective nucleating agents are known for only a small number of systems, and many questions remain about the mechanisms by which they operate. Here, we explore the features that make an effective nucleant and demonstrate that the biological material hair─which naturally possesses a chemically and topographically complex surface structure─has excellent potential as an effective nucleating agent. Crystallization of poorly soluble compounds in the presence of hairs from a range of mammals shows that nucleation preferentially occurs at the cuticle step edges, while a novel microdroplet-based methodology was used to quantify the nucleating activities of different hairs. This showed that the activities of the hairs can be tuned over a wide range using chemical treatments. Analysis of the hair structure and composition using atomic force microscopy, scanning ion conductance microscopy, and X-ray photoelectron spectroscopy demonstrates that surface chemistry, surface topography, and surface charge all act in combination to create effective nucleation sites. This work therefore contributes to our understanding of heterogeneous nucleating agents and shows that surface topography as well as surface chemistry can be used in the design or selection of universal nucleating agents.</p
    corecore