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ABSTRACT  

A major challenge in electrocatalysis is to understand the impact of electrochemical processes on 

the physicochemical properties of nanoparticle or nanocluster (NC) ensembles, especially for 

complex processes, such as the oxygen reduction reaction (ORR) considered herein. We describe 

an approach whereby electrocatalysis at a small number of well-defined mass-selected Pt NCs 

(Pt923±37, diameter, d ≈ 3 nm) deposited from a cluster beam source on carbon-coated TEM grids, 

can be measured by a scanning electrochemical cell microscopy (SECCM) setup, in tandem with 

a range of complementary microscopy and spectroscopy techniques. The SECCM set up delivers 

high mass transport rates and allows the effects of transient reactive intermediates to be elucidated 

for different Pt surface coverage (NC spacing). A major observation is that the ORR activity 

decreases during successive electrochemical (voltammetric) measurements. This is shown to be 

due to poisoning of the Pt NCs by carbon/oxygen containing moieties that are produced by the 

reaction of reactive oxygen intermediates (RIs), generated by ORR, with the carbon support. The 

effect is most prominent when the Pt surface coverage on the carbon support is low (< 6%). 

Furthermore, the NC deposition impact energy affects drastically the resulting Pt NC stability 

during electrochemistry. For lower impact energy, Pt NCs migrate as a consequence of the ORR 

and are rearranged in characteristic groups on the support. This previously unseen effect is caused 

by an uneven flux distribution around individual NCs within the ensemble and has important 

consequences for understanding the stability and activity of NC and nanoparticle arrays.  
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INTRODUCTION 

Understanding electrocatalytic processes in nanoparticle (NP) assemblies is very challenging 

because of the complex time- and history-dependent structure-activity-mechanism-stability 

relationships that operate in such systems. This is particularly true for the oxygen reduction 

reaction (ORR), for which the behavior of the most efficient (Pt and Pt alloy) catalysts is still not 

completely understood.1–4 ORR processes on extended Pt surfaces have been extensively studied 

by employing well-defined Pt single crystals,2,5,6 but highly dispersed supported NPs that provide 

large surface areas and enhanced mass-specific activities are needed for practical applications. The 

effects of catalyst loading and inter-particle interactions on the ORR mechanism, selectivity, 

stability and the inherent activity remain under discussion and are undergoing revision.1,4,7–14  A 

major consideration in the ORR is the balance between the 2 e- process (leading to H2O2) and 4 e- 

process (yielding H2O) and the action of the reactive oxygen intermediates (RIs) produced. 

Most experimental studies have been performed on Pt NP dispersions, normally synthesized by 

wet-chemistry methods, and deposited on high-surface-area carbon materials.1,15–18 Although there 

have been important advances in understanding aspects of electrocatalysis,1,3,15,16,19–21 such 

approaches incur difficulties, such as relatively poor control over the size, loading and spatial 

distribution of the catalyst NPs. Moreover, solution-synthesized metal colloids are normally 

stabilized by ligands and may undergo unwanted aggregation during deposition onto activated 

carbon, inhibiting catalytic activity.22 Subtle differences in NP size, loading and geometrical 

arrangement have recently been shown to affect drastically the catalyst activity1,7,12 and selectivity 

(H2O2 vs H2O yield).8,23,24 Higher ORR activity for higher Pt loading (and hence smaller inter-NP 

distance) is generally seen, for which there have been two explanations. Most simply, as H2O2 is 

a reaction intermediate of the ORR, a smaller separation between NPs enhances the probability 
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that H2O2 is reduced to H2O, enhancing the overall activity.23,24 Another hypothesis is that 

decreasing the distance between NPs enhances the overlap between the electrical double layers of 

neighboring NPs, which alters the energetics of adsorbed inhibiting species, which in turn 

increases the surface-specific activity.7 Thus, the study of electrochemical processes in well-

defined and characterized NP geometries has become the priority in the field.4 To achieve this 

goal, experiments need to satisfy a number of requirements as outlined below. 

First, arrays of Pt NPs with very small size dispersion (ideally, none) and fine control over NP 

coverage and inter-NP distance are required. This has been achieved by depositing mass-selected 

clusters by vacuum deposition techniques on a variety of substrates,7,25 by dendrimer 

encapsulation,26 or through the use of arrays of nanoelectrodes as a model.23,27,28  

Second, the deposited NPs or nanoclusters (NCs) need to be characterized with the highest 

possible resolution. Although in-situ electron microscopy29,30 and spectroscopy31 techniques 

provide an improved understanding of nano-catalyst structure-activity relationships and 

degradation mechanisms, beam damage29 or insufficient resolution can impose limitations. Ex-situ 

TEM, especially aberration-corrected HAADF-STEM provides atomic resolution and is a 

powerful technique to characterize NCs32,33 even in three dimensions.33–35 Further, carbon-coated 

TEM grids (CCTGs) can be used as electrodes for electrochemistry and have been proven suitable 

for studies of catalyst degradation21,33,36–50 and electrochemical deposition.51–54 Notably, Identical 

Location (IL)-TEM, has been successfully employed to discriminate between different 

degradation mechanisms such as carbon corrosion, Ostwald ripening, NP migration-aggregation 

and NP dissolution.21,36–41,43–46,48–50 However, high resolution TEM studies have not previously 

been performed on mass-selected NCs after probing their electrocatalytic activity.  
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Third, for the electrochemical response to be accurately linked with the structure, chemical 

composition, geometrical arrangement, etc., probing the electrochemistry of a small number of 

NCs is ideal. This has been tackled in different ways. ORR activities have been measured on 

individual entities, such as single nanowires55 and NPs24,56 grown on (ultra)microelectrodes. High 

resolution electrochemical imaging has been employed to probe other electrocatalytic reactions at 

individual NPs,57,58 but these methods are normally limited to NPs of several tens of nm in 

diameter, and the effects of catalyst loading and inter-particle distance are only just beginning to 

be addressed.59 NP impact experiments are a further means of assessing the electrocatalytic 

activity60 of individual entities within a small population, but studies relating activity to the 

structure of a single NP from this type of experiment are rare.61 The use of nanopipettes to 

characterise the size of individual NPs and deliver them to a support electrode is a further prospect 

that will enhance such measurements.62  

Fourth, it is also relevant to study the ORR under proton-exchange membrane fuel cell 

(PEMFC)-like conditions, meaning high O2 mass transport rates, very low catalyst loadings (≤ 1-

10 µg/cm2), and extended potential range (E = 0.5-1 V).63,64 The study of model catalysts under 

high mass-transport rates has been achieved by using flow cells,23,26,65 floating porous gas diffusion 

electrodes64 or by growing single sub-micron Pt particles on carbon electrodes.24  

Here, we present a novel multi-technique approach, designed to address all of the above 

requirements. Our approach provides electrochemical measurements of a small number of well-

defined and characterized NCs, over an extended potential range and under high mass transport 

rates. The NCs are studied on carbon-coated TEM grids which serve as an electrode and enable 

subsequent HAADF-STEM imaging of a large proportion of the cluster population subjected to 

the ORR electrochemical measurements, as well as unperturbed clusters, revealing new 
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information of the effect of electrochemistry on the arrangement of NPs on surfaces. These studies 

are further complemented with XPS measurements. Together with the electrochemical 

measurements, these studies reveal many insights on catalyst and support degradation processes.  

RESULTS AND DISCUSSION 

Depositing mass-selected clusters from a cluster beam source provides control over NC size and 

density independently.66,67 Furthermore, the binding strength between NCs and the substrate can 

be tuned by the voltage that is applied to the substrate during deposition.68 In this work, mass-

selected Pt NCs of 923 ± 37 atoms (Pt923; d ≈ 3 nm) were synthesized in a magnetron-sputtering,67 

gas-aggregation cluster beam source and deposited on CCTGs with two different impact energies 

(0.54 and 1.6 eV/atom) and two different deposition coverages. More details are given in the 

Methods section and Supporting Information, Section S1. Further information can be found 

elsewhere.66,67  Representative HAADF-STEM images, size distributions, and NC distribution 

parameters (diameter, d, particle density, N and surface coverage, SC) are shown in the Supporting 

Information, Section S2. For clarity, hereafter, we refer to these samples as Low Density  - Low 

Impact Energy (LD-LIE, N ≈ 5.2 – 6.1 x 1011 cm-2, SC ≈ 5.5 ± 1.1%), Low Density  - High Impact 

Energy (LD-HIE, N ≈ 6.3 - 6.5 x 1011 cm-2, SC ≈ 6.1 ± 1.0%), and High Density – High Impact 

Energy (HD-HIE, N ≈ 2 – 2.3 x 1012 cm-2, SC ≈ 36.9 ± 1.9%). These distributions correspond to 

Pt loadings of, approximately, 0.1 µg/cm2 and 0.85 µg/cm2 for the low and high density, 

respectively, which are in the range or even lower than the catalyst loadings presently been 

investigated for PEMFCs (≤ 1-40 µg/cm2).1,64  

The Pt/CCTGs were studied with a scanning electrochemical cell microscopy (SECCM) setup 

(Figure 1a), using a dual-channel pipette of approximately 1 µm in diameter,69–71 with each barrel 
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of the probe containing a Pd-H2 quasi-reference counter electrode (QRCE), filled with 0.1 M 

HClO4 supporting electrolyte. The CCTG was placed on an inverted optical microscope, allowing 

micron spatial resolution optical visualization of the positions where the electrochemical 

measurements were performed (Figure 1b); see Methods section for further information. The 

working electrode probe was brought into meniscus contact with the CCTG to create a working 

electrode of ca. 1 m diameter. By means of this approach, the electrochemical activity of 

approximately 5000 to 16000 clusters (depending on the cluster density) was measured. Ex-situ 

HAADF-STEM analysis could subsequently be performed in the area exposed to the 

electrochemical process, as such areas appeared brighter (Figure 1c) as a consequence of the ORR 

measurements (this phenomenon is discussed later). This approach also allowed the study of 

catalyst NC degradation processes, since a representative region ‘just outside’ the area probed 

electrochemically (equivalent to the situation before electrochemistry) could also be imaged for 

comparison.  
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Figure 1 a) Schematic of the carbon-coated TEM grid (with Pt NCs) mounted on an inverted optical 

microscope equipped with a dual-barrel SECCM setup. b) Optical microscope image showing the 

exact position where the SECCM tip is landed on the TEM grid. c) HAADF-STEM image showing 

the footprint of the area that was in contact with the SECCM meniscus (≈ 1 µm2) 

 

The diffusion of O2 to the CCTG surface is both through the electrolyte solution (from the 

pipette) and across the aqueous-air phase72 (see also scheme in Figure 2a), providing mass-

transport rates of the order of 0.1 cm s-1 or higher,72 at least an order of magnitude higher than with 

the standard rotation rates employed in an RDE setup (1000 - 2000 rpm).19 This 3 phase 

arrangement mimics that found in PEMFCs. 
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Oxygen reduction reaction on mass-selected Pt NCs  

Figures 2b and 2c show cyclic voltammograms (CVs) recorded at 10 mV s-1 in air-saturated 

0.1 M HClO4 solution for the two different particle densities and impact energies during 

deposition. The currents were normalized: (a) by the footprint of the droplet (see Figure 1, bottom 

right), in order to obtain the geometrical current densities; and (b) by the Pt surface area of each 

individual experiment, as obtained from STEM imaging (see, for example Figure S2, Supporting 

Information, Section S2) considering each nanocluster as hemispherical.7  

Although electrochemical cleaning is normally carried out to remove contamination from the Pt 

NCs, accelerating the ORR kinetics, it can also affect the structure and organisation of the NCs on 

the surface. To demonstrate this, a standard electrochemical cleaning procedure was carried out 

on LD-HIE and HD-HIE samples and was shown to reduce the overpotential for the ORR onset in 

approximately 80 mV, but to cause significant changes in the Pt NC distribution (see Supporting 

Information, Section S3). Therefore, we did not apply any cleaning treatment to the substrates after 

NC deposition, to avoid any possible change in the structure and organisation of the NCs on the 

surface.  

  Figures 2b and 2c show that, in the absence of electrochemical cleaning, the onset potential of 

the ORR is about 0.7 V for the high density sample and shifts to about 0.6 V for the two low 

density samples. Similar onset potentials have been reported for the ORR on extended Pt surfaces 

(flame annealed and protected by a droplet of water before study, and also subjected to in-situ 

electrochemical cleaning) under high mass transport conditions72 and on small Pt nanoclusters (d 

< 1 nm).8,25,65 More specifically, an onset of approx. 0.7 V vs RHE can be found for a distribution 

of clusters of d ≈ 1 - 2 nm in a RDE configuration (900 rpm) with a Pt loading of 2.5 µgPt cm-2,8 
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between 3 and 25 times higher than the loadings reported in the current manuscript (0.1 and 0.85 

µgPt cm-2). The ORR proceeds in kinetic or mixed control over an extended potential range, down 

to E ≈ 0.2 V. This behavior has been reported when the ORR is measured under high mass transport 

rates.23,24,26,72 At E ≈ 0.2 V, the current starts to level-off. At E ≈ 0.05 V, before having reached a 

plateau, the current magnitude increases drastically, which can be attributed to H2 evolution.  

For the SECCM configuration with a tip of this size, a limiting current of roughly 6 mA/cm2 

would be expected72 for a 4 e- ORR process on the HD-HIE sample where essentially complete 

diffusional overlap would occur (Pt surface coverage ca. 37%). However, the apparent limiting 

current measured for the HD-HIE sample is only about 2.7 mA/cm2. It is known that hydrogen 

adsorbs in Pt at E ≤ 0.3 V and that, in this potential range, the 4e- ORR is no longer possible due 

to adsorbed hydrogen.6,15,73–77 In this potential range, a 2e- process would be expected, in line with 

the currents measured. For the LD samples, the maximum current densities measured before H2 

evolution proceeds are, approximately, 0.3 mA/cm2. Such low current densities cannot be related 

to O2 diffusion limitation, even if a 1e- reduction was considered. With low Pt NC coverage (< 

6%) and the high mass transport rates provided by the SECCM setup, the current limitation arises 

from the blocking of active sites by adsorbed hydrogen and a poisoning of the Pt surface, even 

during the course of the first voltammetric scan (discussed later). This would also explain why the 

current plateau is less evident for the LD samples than for the HD-HIE sample. 
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Figure 2 a) Schematic of the fluxes of reactants and products in the SECCM setup. The flux of O2 

towards the electrode is provided by diffusion down the barrels of the pipette as well as across the 

air-water interface. The flux of RIs and H2O out from the interface is only possible up the barrel. 

RI: reaction intermediate. Linear sweep voltammograms (LSVs) recorded with a dual-barrel 

SECCM setup on a carbon-coated TEM grid with mass-selected Pt NCs, deposited with various 

NC densities and impact energies: geometrical (b) and Pt surface normalized (c) current densities. 

All the voltammograms were recorded at 10 mV s-1 in an air-saturated 0.1 M HClO4 solution.   

When normalized by the Pt surface area (Figure 2c), the CVs also show that a slightly lower 

current density for the samples with lower Pt NP coverage, over the whole potential range. This 

further emphasizes that, under these conditions (low Pt NP coverage (< 6%) and high mass 

transport rates), there is a higher probability that RIs leave the catalyst/solution interface without 
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being further reduced,8,23,24,26 resulting in a lower average number of electrons transferred than in 

the HD-HIE sample, as well as promoting side reactions with the carbon support. The mass 

transport asymmetry of the experimental setup (enhanced flux of reactants due to gas/liquid 

transfer, see Figure 2a), whereas reaction intermediates (RIs) and products are confined to the 

solution, promotes this effect, as discussed later.  

In addition, it must be noted that the Pt surface-normalized current densities for the two different 

LD samples are very similar, independent of the deposition impact energy. This means that subtle 

differences in the shape (i.e., aspect ratio) of the clusters caused by the different impact energies 

(see Supporting Information, Section S2) do not influence significantly the ORR activity. Further, 

Figures 3a and 3b show consecutive scans recorded at 10 mV s-1 on the LD-LIE (3a) and LD-HIE 

(3b) samples. In both cases, a decrease of the electrochemical current across the entire potential 

range, is evident after each scan, regardless of the cluster impact energy.  
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Figure 3 Consecutive LSVs recorded on a carbon-coated TEM grid with mass-selected Pt NCs, 

deposited with (a) low NC density and low impact energy, (b and c) low NC density and high 

impact energy and (d) high density and high impact energy. The voltammograms were recorded 

at (a,b) 10 mV s-1 and (c,d) 100 mV s-1 in an air-saturated 0.1 M HClO4 solution.   

 

Figures 3c and 3d show consecutive scans recorded at 100 mV s-1 on the LD-HIE (3c) and HD-

HIE (3d) samples. A comparison of Figures 3c and 3b reveals that the current densities measured 

at 100 mV s-1 (3c) are higher than these at 10 mV s-1 (3b), and the decrease in activity with each 
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voltammetric scan is more gradual. This reinforces the idea that, when the scan rate is low (long 

timescale), the Pt surface is more susceptible to poisoning. In contrast, there is almost no change 

in current-voltage response for the HD-HIE sample at 100 mV s-1 (3d). We can therefore conclude 

that a decrease of the ORR activity after consecutive CV scans, and even during the first scan for 

low scan rates, occurs for very low Pt surface coverage. In the next sections we examine the 

possible causes of the electrochemically induced activity loss.  

Decrease of the ORR activity under high mass-transport conditions 

The decrease of the electrochemical activity of carbon supported Pt NP or NC catalysts, Pt/C, 

during ORR has been reported extensively.3,21,37,39,44,78 The degradation mechanisms considered 

are Pt dissolution, Pt cluster migration-aggregation, Ostwald Ripening, Pt surface poisoning and 

carbon corrosion which could induce weakening of the Pt-C surface interaction, inducing NP 

migration or the detachment of Pt NPs. In principle, the decrease of current density with 

consecutive scans reported in Figure 3 could be caused by any of these mechanisms.  

Pt NCs (d < 1nm) are particularly prone to surface passivation by organic adsorbates,25 among 

which CO is the most extensively studied.78 Carbon is oxidized to CO2 electrochemically79 at E > 

0.207 vs RHE and although the kinetics are very slow at E ≤ 1V,80 this process is catalyzed by 

small Pt NCs.81 The carbon support may also be oxidized chemically by the attack of RIs,82–86 

which can be generated transiently in the ORR. 

The most prominent RI generated through the ORR is hydrogen peroxide, which may attack 

carbon chemically.82,84,85 To assess whether this was important for the processes studied herein, a 

series of cyclic voltammograms were run with different amounts of H2O2 on the LD-HIE working 

electrode sample (Section S4, Figure S7 of the Supporting Information) to discern whether H2O2 
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was involved in the poisoning of the Pt NCs. H2O2 did not affect the ORR current-voltage response 

or the pattern of voltammetric deterioration with scan number. Thus, any catalyst poisoning is as 

a consequence of the ORR and is related to RI by-products other than H2O2.  

The superoxide anion radical (O2•-)87–90 hydroxyl radical (•OH),91–93 and hydroperoxyl radical 

(•OOH)94 have all been detected as products from the ORR in PEMFCs91,95,96 or in aqueous 

alkaline or neutral solutions.89,90,94,97–99 They have also been detected directly88,94 or indirectly99 in 

small concentrations and suggested75,76,100 as ORR reaction intermediates in acidic solutions. 

Whereas at an extended Pt electrode, these RIs will be further reduced to hydrogen peroxide or 

water at vicinal Pt sites, due to the high mass transport rates in an SECCM setup and the small size 

and low coverage of the Pt NCs, these RIs can readily diffuse to, and react with, the carbon support 

near the NCs,81 and the product(s) of this reaction (including CO) may adsorb on, and poison, the 

Pt NCs.84 This effect would obviously be more prominent for the LD NC ensembles, as found 

herein.  

XPS measurements were performed on the LD-HIE and HD-HIE samples before and after a 

series of CVs (200 scans at 200 mV s-1) to investigate the effect of the ORR on the chemical 

composition of the carbon support.36,80,101 The relative composition of Pt, C and O before and after 

ORR is summarized in the Supporting Information, Section S5, Table S3. Interestingly, the oxygen 

to carbon ratio increased significantly after the ORR for the LD-HIE case (from 0.16 to 0.38) 

whereas it stayed almost constant in the HD-HIE case (change from 0.25 to 0.28). Figure 4 shows 

XPS spectra between the binding energies Eb = 278 eV and Eb = 296 eV, corresponding to the C 

1s peak and its deconvolution into different chemical bonds.  It can be seen by inspection of Figures 

4a (before ORR) and 4b (after ORR) that the chemical signature of carbon changes significantly 

for the LD-HIE sample. As detailed in Supporting Information, Section S5, Table S4, the relative 



 16 

amount of graphitic carbon decreased significantly (from 53% to 22%), whereas the contribution 

from C-C/C-H and C-O increased significantly (from 34% to 53% and from 6% to 14%, 

respectively). The contribution of O=C-OH and C=O remained almost unchanged, before and after 

electrochemistry (4-7% and 3% respectively). In contrast, for the HD-HIE sample (Figures 4c and 

4d), the ratio between graphitic carbon and C-C/C-H, was largely unaffected by the ORR (the 

contribution of graphitic carbon slightly decreases from 48% to 40% and the contribution of C-

C/C-H remains about 33%). An increase in C-O is apparent (from 12% to 17%) and the relative 

contribution of O=C-OH and C=O remains almost unchanged (3-5% in both cases).  
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Figure 4 XPS spectra of the C 1s peak from a carbon-coated TEM grid with mass-selected Pt NCs 

deposited with (a,b) low NC density and (c,d) high NC density, (a,c) before and (b,d) after 200 

voltammetric scans from E = 0 V to E = 1.1 V vs Pd-H2 at 200 mV s-1. 

 

The different evolution of the surface chemistry of the carbon support for the LD and HD 

samples, after driving the ORR for the same time and extent, is clear evidence of differences in 

the ORR process and proportions of by-products (RIs) that depend solely on the density and 
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geometrical arrangement of NCs on the carbon support. When the coverage of Pt NCs is low, RIs 

are more likely to escape from the Pt surface and chemically attack the carbon support. The 

hydroxyl (•OH) or hydroperoxil (•OOH) radical have been suggested as the cause of increase in 

oxygen containing functional groups of carbon supports after ORR in acidic solutions,36 and the 

•OH radical  preferentially attacks sp2 graphitic carbon.83 When the coverage of Pt NCs is higher 

(HD-HIE), RIs are less likely to attack the carbon support, because this process is in parallel with 

the further reduction of RIs species at the higher coverage of neighboring Pt NCs. Note that XPS 

spectra of the same CCTGs with no Pt NCs were also acquired before and after the same CV cycle 

regime (not shown) and no changes in the carbon C 1s peak were detected. Therefore, it is clear 

that the RIs that attack the carbon support are formed at the Pt NCs during the ORR and that the 

extent of attack increases as the Pt NC coverage decreases. 

Figure 5 shows XPS spectra between the binding energies Eb = 63 eV and Eb = 82 eV, 

corresponding to the Pt 4f peak and its deconvolution into metallic and oxidized Pt for both the 

LD-HIE sample, before (a) and after (b) the ORR, and the HD-HIE sample, before (c) and after 

(d) ORR. The relative contributions of both oxidation states are shown in the Supporting 

Information, Section S5, Table S5. Only metallic Pt is seen before the ORR, for both samples. 

Since, the CVs are finished at E = 1 V, it would be expected that, after the ORR cycles, the Pt NCs 

would be partially oxidized. However, although an error of ±2% must be borne in mind, it is 

evident from Figure 5 and Table S5 of the Supporting Information that the ratio of oxidized to 

metallic Pt is larger in the LD (0.15 ± 0.03) than in the HD (0.03 ± 0.02) case. We note that the 

HD sample consists of both isolated and aggregated clusters, but a detailed analysis of the STEM 

images indicates that the Pt surface to volume ratio of the LD sample is only 1.25 times higher 

than the HD sample, which does not account for the large differences in oxidized to metallic Pt 
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ratios between these two samples. Rather, these data suggest that carbon surface oxides, from the 

carbon corrosion process, are bound to the Pt NCs and explain the severe poisoning seen, for the 

LD samples.  

 

Figure 5 Figure 4 XPS spectra of the Pt 4f peak recorded on a carbon-coated TEM grid with mass-

selected Pt NCs deposited with (a,b) low NC density and (c,d) high NC density, (a,c) before and 

(b,d) after 200 scans from E = 0 V to E = 1.1 V vs Pd-H2 at 200 mV s-1.  
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Further analysis of the Pt 4f peak revealed a difference in the binding energy of the oxidized Pt 

contribution between the HD (Eb = 74.2 eV) and LD (Eb = 73.6 eV) samples, with a larger peak 

separation for the HD case. The low amount of Pt in the LD case and the consequent noise of the 

Pt 4f XPS spectra, does not allow us to draw definitive conclusions about the Pt surface state, but 

it is clear that, when the Pt NC density is low, driving the ORR leads not only to a higher amount 

of oxidized Pt, but also a surface that is chemically distinct from the HD case.  

HAADF-STEM analysis 

 

A deterioration of the carbon support, as identified in the previous section, has been related to 

the detachment or migration-aggregation of Pt NCs,36 which induce electrochemical activity 

losses. To reveal whether Pt NC migration-aggregation, detachment, dissolution or Ostwald 

Ripening contribute to the gradual loss of activity seen in the voltammetric scans (Figure 3), a 

thorough microscopic analysis of the Pt NC distributions was performed just outside (equivalent 

to “before ORR”) and inside (equivalent to “after ORR”) the areas where the ORR was executed 

for different times (voltammetric scan rates). This analysis considered the effect of deposition 

impact energy on NC stability.  

Figure 6 shows representative HAADF-STEM images and corresponding size and cumulative 

Nearest Neighbor Distance (NND) histograms of the LD-HIE sample after a series of cyclic 

voltammograms. Figure 6a displays HAADF-STEM images taken just outside two SECCM 

regions where 50 scans at 500 mV s-1 (first row) and 15 scans at 10 mV s-1 (second row) were 

performed, while Figure 6b shows characteristic images taken inside these spots. At first sight, 

there are no obvious differences in NC size or geometrical arrangement between these neighboring 

areas. 



 21 

 

Figure 6 Representative HAADF-STEM images of Pt NCs deposited on a carbon coated TEM grid 

with low NC density and high impact energy (a) before and (b) after (first row) 50 scans at 500 

mV s-1 and (second row) 15 scans at 10 mV s-1. Pt NC (c) size and (d) cumulative nearest neighbor 

distance histograms before and after 50 scans at 500 mV s-1. 
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Figures 6c and 6d show the particle size and cumulative NND histograms for the case of 50 

scans at 500 mV s-1. The particle size is almost identical outside (‘before ORR’) and inside (after 

‘ORR’) the electrochemically measured area. The geometrical NC arrangement, as indicated by 

the cumulative NND histogram, is also unchanged by the electrochemistry. This was found for the 

whole range of cyclic voltammograms recorded for different number of cycles and scanning rates 

of the LD-HIE sample (see Supporting Information, Section S6).  

The data in Figure 6 are highly significant: one can rule out Ostwald Ripening, Pt dissolution 

and Pt NC detachment as being responsible for the loss of electrochemical activity. NC migration-

aggregation can also be excluded, since there is no increase in the number of aggregates 

(Supporting Information, Section S7, Figure S11a). A similar analysis was performed on the HD-

HIE sample. There were no obvious changes in the size distribution or geometrical arrangement 

(including sintering) of the Pt NCs (Supporting Information Section S7).  

Figure 7 shows representative HAADF-STEM images of the LD-LIE sample after cycling 

through the ORR with different scan rates. Figure 7a displays HAADF-STEM images from the 

region immediately outside two SECCM spots where 20 voltammetric scans at 50 mV s-1 (first 

row) and 50 scans at 100 mV s-1 (second row) were carried out. Figure 7b shows characteristic 

HAADF-STEM images inside the spots. Substantial differences in the geometrical arrangement of 

NCs after voltammetric scanning are found: the NCs become arranged in groups of several NCs 

(Figure 7b), with sometimes 15 or more NCs per group.  
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Figure 7 Representative HAADF-STEM images of Pt NCs deposited on a carbon coated TEM grid 

with low NC density and low impact energy (a) before and (b) after (first row) 20 scans at 50 mV 

s-1 and (second row) 50 scans at 10 mV s-1. 

The drastic changes in the Pt NC arrangement for the LD-LIE sample, upon electrochemical 

cycling, are quantitatively represented by the NND histograms shown in Figures 8a and 8b and the 

cumulative NND histograms shown in the Supporting Information, Section S8, figure S12b and 

S12c. Whereas before cycling, the NND is broadly distributed between 3 and 15 nm, after driving 

the ORR, approximately 75% of the clusters are separated by less than 5.5 nm from their nearest 

neighbor.  

To quantitatively assess the arrangement of the Pt NCs, an analysis of the Nth Nearest Neighbor 

Distance (with N from 1 to 15) before and after 50 voltammetric scans at 100 mV s-1 is shown in 

Figure 8c.  It is clear that the interparticle distribution after cycling through the ORR shifts to lower 
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values, being particularly evident for the 5 nearest neighbors, but also seen for higher neighbor 

numbers, such as 10th and 15th neighbors.  

 

Figure 8 Nearest neighbor distance histograms before and after (a) 20 scans at 50 mV s-1 and (b) 

50 scans at 100 mV s-1. (e) Interparticle distance histograms for the 15 nearest neighbors before 

and after 50 scans at 100 mV s-1. Pt NC size histograms before and after (e) 50 scans at 500 mV s-

1 and (f) 50 scans at 100 mV s-1. 
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The analysis of HAADF-STEM images after other series of cyclic voltammograms with 

different voltammetric scan rates (see Supporting Information Section S8, Figure S12) leads to the 

same conclusion: NC re-arrangement within the LD-LIE sample occurs during ORR voltammetric 

experiments and a larger extent of clustering is found for longer total polarization times. To be 

certain that the contact and release of the meniscus did not affect the stability of the Pt NCs for the 

LD-LIE sample, the same pipette was approached and left in meniscus contact with the CCTG for 

a similar time as for the voltammetric measurements reported, but without applying any potential. 

After removal of the meniscus, no changes in the NC distribution were observed.  

The size distributions of the LD-LIE NCs before and after 50 scans at 500 mV s-1 and 50 scans 

at 100 mV s-1 are shown in figures 8e and 8f. These is a slight shift towards smaller sizes: the 

average NC diameter changes from 3.22 ± 0.12 nm to 3.11 ± 0.14 nm (e) and from 3.16 ± 0.15 to 

3.09 ± 0.15 nm (f), indicating that a small extent of Pt dissolution may occur, but not to account 

for the significant decrease of electrochemical activity during ORR reported in Figure 3a. A 

summary of all parameters deduced from microscopy, before and after ORR experiments, is given 

in Supporting Information section S8, Table S7.  

The high magnification images in Figure 7b, and the statistical evaluation of the number of 

singlets, doublets and larger clusters inside and adjacent to the areas probed by SECCM 

(Supporting Information, Section S7, Figure S11b), indicates that NCs are arranged into 

characteristic groups, but without aggregation. A similar arrangement has been observed 

previously for Pt NCs soft-landed on HOPG with lower impact energy (typically at 0.1 

eV/atom).102–104 Among reasons for this behavior,102–104 NC patterns of this type have been 

attributed to the effect of small amounts of lightweight chemical species (probably CO104) that 
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readily adsorb on the Pt surface even under UHV conditions. In our case, the edge-to-edge distance 

between NCs is ca. 1.5 nm, close to the ~ 1.2 nm seen in UHV deposition studies. This further 

reinforces the idea, proposed above, that RIs generated during the ORR react with the carbon 

support, and as a consequence, a layer of carbon and oxygen containing reaction products adsorbs 

at the surface of the Pt NCs. This would, on the one hand, prevent the Pt NCs from sintering, and 

on the other hand, hinder the ORR at the poisoned surface, as observed.   

Although STEM imaging cannot identify which species may be covering or poisoning the Pt 

surface, the brighter background in the STEM images of regions of the CCTGs where 

electrochemical measurements have been made (e.g. Figure 1c) is reminiscent of contamination 

build-up during STEM imaging, caused by the polymerisation of carbonaceous species induced 

by the electron beam.105,106 It is tempting to speculate that the brighter background observed is 

caused by a similar process, but one induced by electrochemistry, in line with the XPS analysis 

presented earlier.   

 

Nanocluster migration during ORR 

The migration of weakly bound supported NCs during electrochemistry is an emerging 

phenomena that has been reported during electrodeposition52–54,107,108 and other electrochemical 

processes,50,109,110 but the physicochemical processes that drive this migration have not been 

analyzed in detail. The experimental SECCM setup (see Figure 1 and Figure 2a) does not presently 

allow the measurements to be done in oxygen-free electrolyte. Thus, although random (or 

directional) movement of the clusters caused by potential cycling alone (rather than by the ORR) 

cannot be disregarded, the fact that the degree of clustering seems to be dependent on the total 
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measurement time, rather than the voltammetric scan rate (Supporting Information, Figure S12) 

favors the idea that the movement is caused by the ORR.  

Recently, it has been postulated that when a NP is weakly bound to a surface and an 

electrochemical reaction occurs non-uniformly at the NP surface, there is an electrochemical 

propulsion of the NP, resulting in its detachment from the surface.111,112 Self-generated motion of 

nano-objects has been investigated for NPs, nanorods and microparticles in solution, with113–116 

and without117–121 an applied external electric field. In essence, when different (i.e., bipolar) 

electrochemical reactions occur at the opposite sides of a nanoentity, gradients of ions and of other 

chemical species are generated. Two possibilities for driving NP motion have been considered: (i) 

the electrical field resulting from a gradient of ions drives the motion of the NPs by self-

electrophoresis; (ii) gradients in the concentration of solute molecules generates fluid flow which 

results in the motion of the NPs in the opposite direction by self-diffusiophoresis.119 In this regard, 

since local chemical gradients can also cause local surface tension gradients, Marangoni effects 

could locally drive the liquid from low to high surface tension, resulting in NP motion in the 

opposite direction.117 

Although our studies concern monometallic Pt NCs, chemical concentration gradients of ions 

(protons), reactants (O2 and protons) and reaction products (ROS) are generated because the NCs 

are non-uniformly distributed on the support surface and the flux of reactants (O2 and protons) 

and products will be higher at those (parts of) NCs, which are less diffusionally coupled to 

(shielded from reactants by) neighboring NCs. This would result in non-uniform electric fields 

and/or chemical gradients which would tend to propel NCs towards each other (Figure 9).   
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Figure 9 Schematic representation of two possible driving forces for NC migration due to non-

uniform rates of ORR at different parts of Pt NCs as a result of different extents of diffusional 

shielding. a) Self-electrophoresis: a gradient of protons generates an electric field that would push 

the particles away from each other. b) Self-diffusiophoresis: the stoichiometry of the ORR would 

lead to a gradient of solute molecules that would drag the solvent through osmosis towards the 

diffusionally uncoupled region. This in turn would exert a force into the NCs in the opposite 

direction.  

Although a self-electrophoretic mechanism (Figure 9a) could contribute to NC motion, the 

proton concentration will be lower at the coupled (shielded) parts of the NCs, leading to an electric 

field that would push the negatively charged Pt NCs away from each other, which is opposite to 

what is seen experimentally. Alternatively, a self-diffusiophoretic mechanism, which has also been 

shown to result in motility of colloids,119 would be a more plausible driving force since it would 

propel the particles towards each other (Figure 9b).  
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FEM simulations were implemented to test the reasonableness of these arguments through a 

model which precisely represented the NC geometrical arrangement on the support surface. Full 

details of the simulations are presented in the Supporting Information, Section S9. Briefly, NC 

locations were extracted from TEM images taken from areas that were located immediately outside 

(Figures 10a and 10b) or inside (Figures 10d and 10e) the SECCM meniscus on the LD-LIE sample 

in order to precisely mimic the experimental arrangement of NCs. The NCs were electrochemically 

active, the support was inert, with reactant species, A (concentration 0.2 mM, similar to O2 in 

aerated solution), undergoing simple diffusion-controlled electron transfer at the NCs. 

From these simulations, flux maps could be extracted, as exemplified in Figures 10c and 10f. 

Due to the randomness of the NC distribution before any electrochemical measurement (Figures 

10a, 10b and 10c), there is an inhomogeneous distribution of flux around different NCs. Zooming 

in on individual NCs in Figures 10g, 10h and 10i, it can be seen that this uneven distribution of 

flux around individual NCs is highly dependent on their clustering. Where NCs are shielded by 

neighboring NCs, a lower flux is seen whereas isolated particles exhibit more even distributions 

of higher flux. The flux distribution becomes more inhomogeneous when the particles move closer 

after the ORR measurements (Figures 10d, 10e and 10f). 
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Figure 10 Simulated Pt NC positions (a,d) taken from STEM micrographs (b,e) in a region just 

outside (a-c) or at which SECCM measurements had been performed (d-f). Flux maps (c,f) 

extracted from FEM simulations,revealing an uneven distribution of flux around individual NPs. 

The fluxes at individual NCs highlighted in (f) are shown in (g-i).  

 

Since re-arrangement of the Pt NCs could affect the electrochemical current measured for ORR, 

the effect of NC array formation on the expected electrochemical current was also explored. In 
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Supporting Information Section S9, a model array of 9 NPs with varying separation is considered, 

with a schematic of the simulation domain presented in Figure S14. As expected, as the NC 

separation becomes smaller, there is significant diffusional overlap between neighboring NCs.  

Analysis of the overall diffusion-limited current for the NC distributions typical of inside and 

outside the SECCM meniscus, presented in Figure 10, reveals only ca. 2% fall in the current 

following the change in NC arrangement between ‘out’ and ‘in’, and this cannot account for the 

significant decrease in electrochemical activity observed experimentally during voltammetric 

cycling such as presented in Figure 3. Thus, although NCs can move around on the surface, this 

would have little impact on the overall mass transport limited currents. The ORR is more complex, 

involving transient RIs, and the overall current will be more sensitive to the NC arrangement. 

While NC movement on the surface will contribute to some of the loss of activity seen for the 

ORR in NC arrays, the main factor responsible is poisoning of the surface, for which the NC 

density is particularly important.  

CONCLUSIONS 

We have presented an approach that allows electrocatalytic measurements of a small number of 

well-defined and characterized NCs under high mass transport rates, combined with high 

resolution HAADF-STEM imaging of a large fraction of the same NCs. The interpretation of 

electrochemical data combined with statistical analysis of high resolution STEM images and XPS 

characterization of the substrate surface, has provided major insights into the ORR mechanism at 

the nanoscale under conditions of low catalyst loading, high mass transport conditions and 

extended potential range, of relevance to PEMFC electrocatalysis.  
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Under the high mass transport conditions inherent in the SECCM setup, the ORR 

electrochemical response at Pt923 NCs (d ≈ 3 nm) becomes limited by H adsorption at E ≤ 0.2 V, 

and is strongly affected by the extent of voltammetric measurements are made, deteriorating with 

time, especially when the Pt surface coverage is low. Under these experimental conditions, particle 

detachment, Pt dissolution, Ostwald Ripening, NC migration, aggregation/sintering and H2O2 

poisoning can all be excluded as major causes of the decrease of electrochemical activity during 

ORR cycling. Rather, XPS and HAADF-STEM analysis indicate that the decrease in activity is 

primarily related to the formation of carbon/oxygen groups (i.e., CO) that are generated by the 

reaction of reactive oxygen species, produced as intermediates, with the carbon support surface, 

that adsorb and poison the surface of the Pt NCs. The extent of this process depends on the Pt NC 

surface coverage, being most noticeable for low Pt NC coverages on the carbon support surface. 

The deposition impact energy, i.e., adhesion of the Pt NCs to the carbon substrate, does not 

influence the ORR activity, but affects drastically the Pt NC stability on the carbon substrate. For 

the higher deposition impact energy employed in this work (1.6 eV/atom), the cluster geometrical 

arrangements are essentially identical before and after the electrochemical measurements. 

However, for the lower deposition impact energy (0.54 eV/atom), Pt NCs migrate during the ORR 

measurements and form characteristic arrangements on the surface, without aggregating, in groups 

of up to more than 15 NCs. With the support of FEM simulations, we postulate that such directional 

NC migration is caused by an uneven distribution of electrochemical flux around individual NPs 

caused by the initial random NC distribution across the surface, which generates non-uniform 

electric fields and/or chemical gradients.  
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METHODS 

Cluster Synthesis Setup. Mass-selected Pt clusters were produced in a magnetron-sputtering, 

gas-aggregation cluster beam source with a lateral time-of-flight filter, as described in Supporting 

Information, Section S1 and elsewhere.66,67 The substrate voltage was set to either 500 V (0.54 

eV/atom) or 1500 V (1.6 eV/atom) during deposition. 

HAADF-STEM. STEM images were recorded using a 200 kV JEOL JEM-2100F scanning 

transmission electron microscope with an incorporated spherical aberration corrector (CEOS 

GmbH) and using a high-angle annular dark field (HAADF) detector, operated with inner and 

outer collection angles of 62 and 164 mrad, respectively.  

SECCM Setup and electrochemical measurements. The SECCM setup was presented in 

Figure 1 and the related discussion, and has been described in detail.71 A dual-barrel borosilicate 

capillary (o.d. 1.5 mm, i.d. 1.2 mm, TGC 150-10, Harvard Apparatus) was pulled to generate a 

pipette with a tapered end of ~ 1 µm, using a CO2-laser puller (P-2000, Sutter Instruments). Two 

palladium wires (saturated with H2 by applying -3.0 V for 30 min in 0.1 M HClO4) were placed 

into each barrel and used as QRCEs in all the electrochemical measurements. The pipette was 

mounted vertically on a z-piezoelectric positioner (P-753.1CD LISA, PhysikInstrumente), over the 

substrate (Pt-loaded TEM grid) and the coarse and fine approaches of pipette towards the substrate 

were conducted with control of a picomotor (Newport, 8303 Picomotor Actuator) and the z-

piezoelectric positioner, respectively. A data acquisition rate of ca. 390 points/s (each point the 

average of 256 readings) was achieved by use of an FPGA card (PCIe-7852R) with a LabVIEW 

2013 (National Instruments) interface. With reference to Figure 1, the meniscus was landed on the 

CCTG surface, without physical contact from the pipette probe itself, by monitoring the surface 



 34 

current at the substrate (arising from double layer charging). The electrolyte was air-saturated 0.1 

M HClO4 aqueous solution. Pd-H2 wires were used as QRCEs in all the electrochemical 

measurements. The H2O2 measurements were performed with identical conditions, except that the 

solutions (0.1 M HClO4) included contained 1 or 5 mM H2O2.  

XPS Characterization. For XPS characterization, the TEM grids with Pt NCs were immersed 

in a 0.1 M solution of HClO4 and 200 CV scans were performed from 1.1 V to 0.05 V vs Pd-H2 

reference electrode, with a scan rate of 200 mV s-1, using a commercial bipotentiostat (730A, CH 

Instruments,inc., Austin, USA). The grids were then mounted on to a metallic sample bar using 

electrically-conductive carbon tape and loaded in to a Kratos Axis Ultra DLD spectrometer. XPS 

measurements were performed in a pressure below 1 x 10-9 mbar with the sample illuminated using 

an Al k monochromated x-ray source. The binding energy scale and the transmission function of 

the spectrometer were calibrated using clean Ag foil prior to the experiments commencing. Survey 

spectra were acquired using a pass energy of 160 eV while high resolution core level spectra were 

acquired at a pass energy of 20 eV (resolution approx. 0.4 eV). All measurements were performed 

using an analysis area 110 m in diameter. Data were analysed using CasaXPS, employing Voigt 

lineshapes for all peaks except the metallic Pt contributions to the Pt 4f region where an 

asymmetric Lorentzian lineshape, LA(1.5,90,30), was used 

Finite Element Simulations. FEM simulations were performed in COMSOL Multiphysics 5.2a 

with the transport of diluted species module. For full details, please see Supporting Information, 

Section S9 and the main text. 
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Supporting Information Available: Cluster deposition setup and procedure. Cluster 

characterization before electrochemical measurements: Effect of the substrate voltage on the 

cluster shape and size distribution. ORR measurements with added H2O2. XPS Analysis. 

HAADF-STEM analysis for the LD-HIE sample. Analysis of the singlets, doublets and larger 

particles for the LD-HIE, LD-LIE and HD-HIE samples. HAADF-STEM analysis for the LD-LIE 

sample. FEM Simulations: effect of Clustering on Electrochemical Response. This material is 

available free of charge via the Internet at http://pubs.acs.org.  
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