244 research outputs found

    Validation of a new spectrometer for noninvasive measurement of cardiac output

    Get PDF
    Acetylene is a blood-soluble gas and for many years its uptake rate during rebreathing tests has been used to calculate the flow rate of blood through the lungs (normally equal to cardiac output) as well as the volume of lung tissue. A new, portable, noninvasive instrument for cardiac output determination using the acetylene uptake method is described. The analyzer relies on nondispersive IR absorption spectroscopy as its principle of operation and is configured for extractive (side-stream) sampling. The instrument affords exceptionally fast (30 ms, 10%–90%, 90%–10%, at 500 mL min–1 flow rates), interference-free, simultaneous measurement of acetylene, sulfur hexafluoride (an insoluble reference gas used in the cardiac output calculation), and carbon dioxide (to determine alveolar ventilation), with good (typically ±2% full-scale) signal-to-noise ratios. Comparison tests with a mass spectrometer using serially diluted calibration gas samples gave excellent (R2>0.99) correlation for all three gases, validating the IR system's linearity and accuracy. A similar level of agreement between the devices also was observed during human subject C2H2 uptake tests (at rest and under incremental levels of exercise), with the instruments sampling a common extracted gas stream. Cardiac output measurements by both instruments were statistically equivalent from rest to 90% of maximal oxygen consumption; the physiological validity of the measurements was confirmed by the expected linear relationship between cardiac output and oxygen consumption, with both the slope and intercept in the published range. These results indicate that the portable, low-cost, rugged prototype analyzer discussed here is suitable for measuring cardiac output noninvasively in a point-of-care setting

    Artificial photosynthesis: semiconductor photocatalytic fixation of CO_2 to afford higher organic compounds

    Get PDF
    Carbon dioxide is an appealing renewable feedstock for industrial chemical processes. This does not mean, however, that all chemical processes using CO_2 are environmentally-friendly. Perspectives on the sustainability of CO_2 utilization and artificial photosynthesis are provided. The discussions focus on the photocatalytic production of C_x (x ≥ 2) compounds, where all the carbon in the products is derived from CO_2. This area of research, while promising, has received far less attention than analogous systems leading to C_1 products

    Redox and pH gradients drive amino acid synthesis in iron oxyhydroxide mineral systems

    Get PDF
    Iron oxyhydroxide minerals, known to be chemically reactive and significant for elemental cycling, are thought to have been abundant in early-Earth seawater, sediments, and hydrothermal systems. In the anoxic Fe^(2+)-rich early oceans, these minerals would have been only partially oxidized and thus redox-active, perhaps able to promote prebiotic chemical reactions. We show that pyruvate, a simple organic molecule that can form in hydrothermal systems, can undergo reductive amination in the presence of mixed-valence iron oxyhydroxides to form the amino acid alanine, as well as the reduced product lactate. Furthermore, geochemical gradients of pH, redox, and temperature in iron oxyhydroxide systems affect product selectivity. The maximum yield of alanine was observed when the iron oxyhydroxide mineral contained 1:1 Fe(II):Fe(III), under alkaline conditions, and at moderately warm temperatures. These represent conditions that may be found, for example, in iron-containing sediments near an alkaline hydrothermal vent system. The partially oxidized state of the precipitate was significant in promoting amino acid formation: Purely ferrous hydroxides did not drive reductive amination but instead promoted pyruvate reduction to lactate, and ferric hydroxides did not result in any reaction. Prebiotic chemistry driven by redox-active iron hydroxide minerals on the early Earth would therefore be strongly affected by geochemical gradients of E_h, pH, and temperature, and liquid-phase products would be able to diffuse to other conditions within the sediment column to participate in further reactions

    Characterization of structures in biofilms formed by a Pseudomonas fluorescens isolated from soil

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Microbial biofilms represent an incompletely understood, but fundamental mode of bacterial growth. These sessile communities typically consist of stratified, morphologically-distinct layers of extracellular material, where numerous metabolic processes occur simultaneously in close proximity. Limited reports on environmental isolates have revealed highly ordered, three-dimensional organization of the extracellular matrix, which may hold important implications for biofilm physiology <it>in vivo</it>.</p> <p>Results</p> <p>A <it>Pseudomonas </it>spp. isolated from a natural soil environment produced flocculent, nonmucoidal biofilms <it>in vitro </it>with unique structural features. These mature biofilms were made up of numerous viable bacteria, even after extended culture, and contained up to 50% of proteins and accumulated 3% (by dry weight) calcium, suggesting an important role for the divalent metal in biofilm formation. Ultrastructurally, the mature biofilms contained structural motifs consisting of dense, fibrillary clusters, nanofibers, and ordered, honeycomb-like chambers enveloped in thin sheets.</p> <p>Conclusion</p> <p>Mature biofilms contained living bacteria and were structurally, chemically, and physiologically heterogeneous. The principal architectural elements observed by electron microscopy may represent useful morphological clues for identifying bacterial biofilms <it>in vivo</it>. The complexity and reproducibility of the structural motifs observed in bacterial biofilms appear to be the result of organized assembly, suggesting that this environmental isolate may possess ecological advantages in its natural habitat.</p

    Biofilm-specific extracellular matrix proteins of nontypeable Haemophilus influenzae

    Get PDF
    Nontypeable Haemophilus influenzae (NTHi), a human respiratory tract pathogen, can form colony biofilms in vitro. Bacterial cells and the amorphous extracellular matrix (ECM) constituting the biofilm can be separated using sonication. The ECM from 24- and 96-h NTHi biofilms contained polysaccharides and proteinaceous components as detected by nuclear magnetic resonance (NMR) and Fourier transform infrared spectroscopy (FTIR) spectroscopy. More conventional chemical assays on the biofilm ECM confirmed the presence of these components and also DNA. Proteomics revealed eighteen proteins present in biofilm ECM that were not detected in planktonic bacteria. One ECM protein was unique to 24-h biofilms, two were found only in 96-h biofilms, and fifteen were present in the ECM of both 24- and 96-h NTHi biofilms. All proteins identified were either associated with bacterial membranes or cytoplasmic proteins. Immunocytochemistry showed two of the identified proteins, a DNA-directed RNA polymerase and the outer membrane protein OMP P2, associated with bacteria and biofilm ECM. Identification of biofilm-specific proteins present in immature biofilms is an important step in understanding the in vitro process of NTHi biofilm formation. The presence of a cytoplasmic protein and a membrane protein in the biofilm ECM of immature NTHi biofilms suggests that bacterial cell lysis may be a feature of early biofilm formation

    Redox and pH gradients drive amino acid synthesis in iron oxyhydroxide mineral systems

    Get PDF
    Iron oxyhydroxide minerals, known to be chemically reactive and significant for elemental cycling, are thought to have been abundant in early-Earth seawater, sediments, and hydrothermal systems. In the anoxic Fe^(2+)-rich early oceans, these minerals would have been only partially oxidized and thus redox-active, perhaps able to promote prebiotic chemical reactions. We show that pyruvate, a simple organic molecule that can form in hydrothermal systems, can undergo reductive amination in the presence of mixed-valence iron oxyhydroxides to form the amino acid alanine, as well as the reduced product lactate. Furthermore, geochemical gradients of pH, redox, and temperature in iron oxyhydroxide systems affect product selectivity. The maximum yield of alanine was observed when the iron oxyhydroxide mineral contained 1:1 Fe(II):Fe(III), under alkaline conditions, and at moderately warm temperatures. These represent conditions that may be found, for example, in iron-containing sediments near an alkaline hydrothermal vent system. The partially oxidized state of the precipitate was significant in promoting amino acid formation: Purely ferrous hydroxides did not drive reductive amination but instead promoted pyruvate reduction to lactate, and ferric hydroxides did not result in any reaction. Prebiotic chemistry driven by redox-active iron hydroxide minerals on the early Earth would therefore be strongly affected by geochemical gradients of E_h, pH, and temperature, and liquid-phase products would be able to diffuse to other conditions within the sediment column to participate in further reactions

    Gender-related differences in infrarenal aortic aneurysm morphologic features: Issues relevant to Ancure and Talent endografts

    Get PDF
    AbstractPurpose: The purpose of this study was to determine whether gender-related anatomic variables may reduce applicability of aortic endografting in women. Methods: Data on all patients evaluated at our institution for endovascular repair of their abdominal aortic aneurysm were collected prospectively. Ancure (Endovascular Technologies (EVT)/Guidant Corporation, Menlo Park, Calif) and Talent (World Medical/Medtronic Corporation, Sunrise, Fla) endografts were used. Preoperative imaging included contrast-enhanced computed tomography and arteriography or magnetic resonance angiography. Results: One hundred forty-one patients were evaluated (April 1998–December 1999), 19 women (13.5%) and 122 men (86.5%). Unsuitable anatomy resulted in rejection of 63.2% of the women versus only 33.6% of the men (P = .026). Maximum aneurysm diameter in women and men were similar (women, 56.94 ± 8.23 mm; men, 59.29 ± 13.22 mm; P = .5). The incidence of iliac artery tortuosity was similar across gender (women, 36.8%; men, 54.9%; P = .2). The narrowest diameter of the larger external iliac artery in women was significantly smaller (7.29 ± 2.37 mm) than in men (8.62 ± 2.07 mm; P = .02). The proximal neck length was significantly shorter in women (10.79 ± 12.5 mm) than in men (20.47 ± 19.5 mm; P = .02). The proximal neck width was significantly wider in women (30.5 ± 2.4 mm) than in men (27.5 ± 2.5 mm; P = .013). Proximal neck angulation (>60 degrees) was seen in a significantly higher proportion of women (21%) than men (3.3%; P = .012). Of the patients accepted for endografting, a significantly higher proportion of women required an iliofemoral conduit for access (women, 28.6%; men, 1.2%; P = .016). Conclusion: Gender-related differences in infrarenal aortic aneurysm morphologic features may preclude widespread applicability of aortic endografting in women, as seen by our experience with the Ancure and Talent devices. In addition to a significantly reduced iliac artery size, women are more likely to have a shorter, more dilated, more angulated proximal aortic neck. (J Vasc Surg 2001;33:S77-84.

    Cultivated Vaginal Microbiomes Alter HIV-1 Infection and Antiretroviral Efficacy in Colonized Epithelial Multilayer Cultures

    Get PDF
    There is a pressing need for modeling of the symbiotic and at times dysbiotic relationship established between bacterial microbiomes and human mucosal surfaces. In particular clinical studies have indicated that the complex vaginal microbiome (VMB) contributes to the protection against sexually-transmitted pathogens including the life-threatening human immunodeficiency virus (HIV-1). The human microbiome project has substantially increased our understanding of the complex bacterial communities in the vagina however, as is the case for most microbiomes, very few of the community member species have been successfully cultivated in the laboratory limiting the types of studies that can be completed. A genetically controlled ex vivo model system is critically needed to study the complex interactions and associated molecular dialog. We present the first vaginal mucosal culture model that supports colonization by both healthy and dysbiotic VMB from vaginal swabs collected from routine gynecological patients. The immortalized vaginal epithelial cells used in the model and VMB cryopreservation methods provide the opportunity to reproducibly create replicates for lab-based evaluations of this important mucosal/bacterial community interface. The culture system also contains HIV-1 susceptible cells allowing us to study the impact of representative microbiomes on replication. Our results show that our culture system supports stable and reproducible colonization by VMB representing distinct community state types and that the selected representatives have significantly different effects on the replication of HIV-1. Further, we show the utility of the system to predict unwanted alterations in efficacy or bacterial community profiles following topical application of a front line antiretroviral
    • …
    corecore