44 research outputs found

    R31C GNRH1 mutation and congenital hypogonadotropic hypogonadism

    Get PDF
    Normosmic congenital hypogonadotropic hypogonadism (nCHH) is a rare reproductive disease leading to lack of puberty and infertility. Loss-of-function mutations of GNRH1 gene are a very rare cause of autosomal recessive nCHH. R31C GNRH1 is the only missense mutation that affects the conserved GnRH decapeptide sequence. This mutation was identified in a CpG islet in nine nCHH subjects from four unrelated families, giving evidence for a putative “hot spot”. Interestingly, all the nCHH patients carry this mutation in heterozygosis that strikingly contrasts with the recessive inheritance associated with frame shift and non-sense mutations. Therefore, after exclusion of a second genetic event, a comprehensive functional characterization of the mutant R31C GnRH was undertaken. Using different cellular models, we clearly demonstrate a dramatic reduction of the mutant decapeptide capacity to bind GnRH-receptor, to activate MAPK pathway and to trigger inositol phosphate accumulation and intracellular calcium mobilization. In addition it is less able than wild type to induce lh-beta transcription and LH secretion in gonadotrope cells. Finally, the absence of a negative dominance in vitro offers a unique opportunity to discuss the complex in vivo patho-physiology of this form of nCHH

    Prolactin Receptor Signaling Is Essential for Perinatal Brown Adipocyte Function: A Role for Insulin-like Growth Factor-2

    Get PDF
    BACKGROUND: The lactogenic hormones prolactin (PRL) and placental lactogens (PL) play central roles in reproduction and mammary development. Their actions are mediated via binding to PRL receptor (PRLR), highly expressed in brown adipose tissue (BAT), yet their impact on adipocyte function and metabolism remains unclear. METHODOLOGY/PRINCIPAL FINDINGS: PRLR knockout (KO) newborn mice were phenotypically characterized in terms of thermoregulation and their BAT differentiation assayed for gene expression studies. Derived brown preadipocyte cell lines were established to evaluate the molecular mechanisms involved in PRL signaling on BAT function. Here, we report that newborn mice lacking PRLR have hypotrophic BAT depots that express low levels of adipocyte nuclear receptor PPARgamma2, its coactivator PGC-1alpha, uncoupling protein 1 (UCP1) and the beta3 adrenoceptor, reducing mouse viability during cold challenge. Immortalized PRLR KO preadipocytes fail to undergo differentiation into mature adipocytes, a defect reversed by reintroduction of PRLR. That the effects of the lactogens in BAT are at least partly mediated by Insulin-like Growth Factor-2 (IGF-2) is supported by: i) a striking reduction in BAT IGF-2 expression in PRLR KO mice and in PRLR-deficient preadipocytes; ii) induction of cellular IGF-2 expression by PRL through JAK2/STAT5 pathway activation; and iii) reversal of defective differentiation in PRLR KO cells by exogenous IGF-2. CONCLUSIONS: Our findings demonstrate that the lactogens act in concert with IGF-2 to control brown adipocyte differentiation and growth. Given the prominent role of brown adipose tissue during the perinatal period, our results identified prolactin receptor signaling as a major player and a potential therapeutic target in protecting newborn mammals against hypothermia

    Recepteurs mineralocorticoiedes : caracterisation dans differents modeles experimentaux et purification par chromatographie d'affinite

    No full text
    SIGLECNRS T Bordereau / INIST-CNRS - Institut de l'Information Scientifique et TechniqueFRFranc

    [Targeted therapies, prognostic and predictive factors in endocrine oncology].

    No full text
    International audienceA better understanding of molecular mechanisms responsible for tumorigenesis has allowed the development of targeted drugs designed to improve the outcome of cancer. In endocrine tumors, several molecules have demonstrated efficacy in terms of progression free survival during phase III trials such as vandetanib and cabozantinib in medullary thyroid carcinoma, sorafenib in differentiated thyroid carcinoma and everolimus or sunitinib for pancreatic neuroendocrine tumors. Rare cancer network has allowed ongoing phase III trials in malignant pheochromocytoma and adrenocortical carcinoma. However, to date no specific predictive biomarker has yet been identified for a personalized cancer medicine. We review recent advances in endocrine oncology concerning molecular targets identification, targeted therapies and predictive or prognostic markers

    Vasopressin, ATP and catecholamines differentially control potassium secretion in inner ear cell line.

    Get PDF
    International audienceA strict control of endolymph composition (high potassium, low sodium fluid) and volume is instrumental for a proper functioning of the inner ear. Alteration of endolymph homeostasis is proposed in the pathogenesis of Menière's disease. However, the mechanisms controlling endolymph secretion remain elusive. By using the vestibular EC5v cells, we provide evidence for the presence of vasopressin, catecholamine and purinergic signaling pathways, coupled to adenylate cyclase, phosphoinositidase C and Ca(2+) activation. We demonstrate that vasopressin and catecholamines stimulate while ATP inhibits apical potassium secretion by EC5v cells. These results open new interesting perspectives for the management of inner ear diseases

    Mitotane alters mitochondrial respiratory chain activity by inducing cytochrome c oxidase defect in human adrenocortical cells: Mitotane-induced cytochrome c oxidase defect

    Get PDF
    Mitotane, 1,1-dichloro-2-(o-chlorophenyl)-2-(p-chlorophenyl)ethane (o,p'-DDD) is the most effective medical therapy for adrenocortical carcinoma but its molecular mechanism of action remains poorly understood. Although mitotane is known to have mitochondrial (mt) effects, a direct link to mitochondrial dysfunction has never been established. We examined the functional consequences on proliferation, steroidogenesis, and mitochondrial respiratory chain, biogenesis and morphology, of mitotane exposure in two human adrenocortical cell lines, the steroid-secreting H295R line and the non-secreting SW13 line. Mitotane inhibited cell proliferation in a dose- and a time-dependent manner. At the concentration 50μM (14 mg/L), which corresponds to the threshold for therapeutic efficacy, mitotane drastically reduced cortisol and 17-hydroxyprogesterone secretions by 70%. This was accompanied by significant decreases in the expression of genes encoding mitochondrial proteins involved in steroidogenesis (STAR, CYP11B1, CYP11B2). In both H295R and SW13 cells, 50μM mitotane significantly inhibited (50%) the maximum velocity of the activity of the respiratory chain complex IV (cytochrome c oxidase, COX). This effect was associated with a drastic reduction in steady-state levels of the whole COX complex as revealed by Blue Native PAGE and reduced mRNA expression of both mtDNA-encoded COX2 and nuclear DNA-encoded COX4 subunits. In contrast, the activity and expression of respiratory chain complexes II and III were unaffected by mitotane treatment. Lastly, mitotane exposure enhanced mitochondrial biogenesis (increase in mtDNA content and PGC1α expression) and triggered fragmentation of the mitochondrial network. Altogether, our results provide first evidence that mitotane induced a mitochondrial respiratory chain defect in human adrenocortical cells
    corecore