52 research outputs found
High and Persistent HIV Seroincidence in Men Who Have Sex with Men across 47 U.S. Cities
OBJECTIVE: To provide HIV seroincidence data among men who have sex with men (MSM) in the United States and to identify predictive factors for seroconversion. METHODS: From 1998-2002, 4684 high-risk MSM, age 18-60 years, participated in a randomized, placebo-controlled HIV vaccine efficacy trial at 56 U.S. clinical trial sites. Demographics, behavioral data, and HIV status were assessed at baseline and 6 month intervals. Since no overall vaccine efficacy was detected, data were combined from both trial arms to calculate HIV incidence based on person-years (py) of follow-up. Predictors of seroconversion, adjusted hazards ratio (aHR), were evaluated using a Cox proportional hazard model with time-varying covariates. RESULTS: Overall, HIV incidence was 2.7/100 py and was relatively uniform across study sites and study years. HIV incidence was highest among young men and men reporting unprotected sex, recreational drug use, and a history of a sexually transmitted infection. Independent predictors of HIV seroconversion included: age 18-30 years (aHR = 2.4; 95% CI 1.4,4.0), having >10 partners (aHR = 2.4; 95% CI 1.7,3.3), having a known HIV-positive male sex partner (aHR = 1.6; 95% CI 1.2, 2.0), unprotected anal intercourse with HIV positive/unknown male partners (aHR = 1.7; 95% CI 1.3, 2.3), and amphetamine (aHR = 1.6; 95% CI 1.1, 2.1) and popper (aHR = 1.7; 95% CI 1.3, 2.2) use. CONCLUSIONS: HIV seroincidence was high among MSM despite repeated HIV counseling and reported declines in sexual risk behaviors. Continuing development of new HIV prevention strategies and intensification of existing efforts will be necessary to reduce the rate of new HIV infections, especially among young men
Defining the interval for monitoring potential adverse events following immunization (AEFIs) after receipt of live viral vectored vaccines
Live viral vectors that express heterologous antigens of the target pathogen are being investigated in the development of novel vaccines against serious infectious agents like HIV and Ebola. As some live recombinant vectored vaccines may be replication-competent, a key challenge is defining the length of time for monitoring potential adverse events following immunization (AEFI) in clinical trials and epidemiologic studies. This time period must be chosen with care and based on considerations of pre-clinical and clinical trials data, biological plausibility and practical feasibility. The available options include: (1) adapting from the current relevant regulatory guidelines; (2) convening a panel of experts to review the evidence from a systematic literature search to narrow down a list of likely potential or known AEFI and establish the optimal risk window(s); and (3) conducting “near real-time“ prospective monitoring for unknown clustering's of AEFI in validated large linked vaccine safety databases using Rapid Cycle Analysis for pre-specified adverse events of special interest (AESI) and Treescan to identify previously unsuspected outcomes. The risk window established by any of these options could be used along with (4) establishing a registry of clinically validated pre-specified AESI to include in case-control studies. Depending on the infrastructure, human resources and databases available in different countries, the appropriate option or combination of options can be determined by regulatory agencies and investigators
Defining the interval for monitoring potential adverse events following immunization (AEFIs) after receipt of live viral vectored vaccines
Live viral vectors that express heterologous antigens of the target pathogen are being investigated in the development of novel vaccines against serious infectious agents like HIV and Ebola. As some live recombinant vectored vaccines may be replication-competent, a key challenge is defining the length of time for monitoring potential adverse events following immunization (AEFI) in clinical trials and epidemiologic studies. This time period must be chosen with care and based on considerations of pre-clinical and clinical trials data, biological plausibility and practical feasibility. The available options include: (1) adapting from the current relevant regulatory guidelines; (2) convening a panel of experts to review the evidence from a systematic literature search to narrow down a list of likely potential or known AEFI and establish the optimal risk window(s); and (3) conducting “near real-time“ prospective monitoring for unknown clustering's of AEFI in validated large linked vaccine safety databases using Rapid Cycle Analysis for pre-specified adverse events of special interest (AESI) and Treescan to identify previously unsuspected outcomes. The risk window established by any of these options could be used along with (4) establishing a registry of clinically validated pre-specified AESI to include in case-control studies. Depending on the infrastructure, human resources and databases available in different countries, the appropriate option or combination of options can be determined by regulatory agencies and investigators
Pre-Clinical Development of a Recombinant, Replication-Competent Adenovirus Serotype 4 Vector Vaccine Expressing HIV-1 Envelope 1086 Clade C
BackgroundThere is a well-acknowledged need for an effective AIDS vaccine that protects against HIV-1 infection or limits in vivo viral replication. The objective of these studies is to develop a replication-competent, vaccine vector based on the adenovirus serotype 4 (Ad4) virus expressing HIV-1 envelope (Env) 1086 clade C glycoprotein. Ad4 recombinant vectors expressing Env gp160 (Ad4Env160), Env gp140 (Ad4Env140), and Env gp120 (Ad4Env120) were evaluated.MethodsThe recombinant Ad4 vectors were generated with a full deletion of the E3 region of Ad4 to accommodate the env gene sequences. The vaccine candidates were assessed in vitro following infection of A549 cells for Env-specific protein expression and for posttranslational transport to the cell surface as monitored by the binding of broadly neutralizing antibodies (bNAbs). The capacity of the Ad4Env vaccines to induce humoral immunity was evaluated in rabbits for Env gp140 and V1V2-specific binding antibodies, and HIV-1 pseudovirus neutralization. Mice immunized with the Ad4Env160 vaccine were assessed for IFNγ T cell responses specific for overlapping Env peptide sets.ResultsRobust Env protein expression was confirmed by western blot analysis and recognition of cell surface Env gp160 by multiple bNAbs. Ad4Env vaccines induced humoral immune responses in rabbits that recognized Env 1086 gp140 and V1V2 polypeptide sequences derived from 1086 clade C, A244 clade AE, and gp70 V1V2 CASE A2 clade B fusion protein. The immune sera efficiently neutralized tier 1 clade C pseudovirus MW965.26 and neutralized the homologous and heterologous tier 2 pseudoviruses to a lesser extent. Env-specific T cell responses were also induced in mice following Ad4Env160 vector immunization.ConclusionsThe Ad4Env vaccine vectors express high levels of Env glycoprotein and induce both Env-specific humoral and cellular immunity thus supporting further development of this new Ad4 HIV-1 Env vaccine platform in Phase 1 clinical trials
PaxVax CVD 103-HgR single-dose live oral cholera vaccine
Introduction: Cholera remains a problem in developing countries and a risk for travelers. Hypochlorhydria, blood group O, cardiac and renal disease increase the risk of developing cholera gravis. Oral vaccines containing inactivated Vibrio cholerae and requiring two doses are available in some countries. No cholera vaccine had been available for U.S. travelers for decades until 2016 when CVD 103-HgR (VAXCHORA™), an oral live attenuated vaccine, was licensed by the U.S. FDA. Areas covered: Enduring protection following wild-type cholera provided the rationale to develop a single-dose live oral vaccine. CVD 103-HgR is well-tolerated and protects against cholera caused by V. cholerae O1 of either serotype (Inaba, Ogawa) and biotype (El Tor, Classical). Since 90% vaccine efficacy is evident 10 days post-ingestion of a single dose, CVD 103-HgR can rapidly protect travelers. Vibriocidal antibody seroconversion correlates with protection; >90% of U.S. adult (including elderly) vaccinees seroconvert. The U.S. Public Health Service’s Advisory Committee on Immunization Practices recommends CVD 103-HgR for U.S. travelers to areas of ongoing cholera transmission. Expert commentary: Next steps include evaluations in children, post-licensure safety and effectiveness monitoring, diminishing cold chain constraints, optimizing a ‘high-dose’ formulation for developing countries, and diminishing/eliminating the need for water to administer a dose
A Brighton Collaboration standardized template with key considerations for a benefit/risk assessment for the Novavax COVID-19 Vaccine (NVX-CoV2373), a recombinant spike protein vaccine with Matrix-M adjuvant to prevent disease caused by SARS-CoV-2 viruses
Novavax, a global vaccine company, began evaluating NVX-CoV2373 in human studies in May 2020 and the pivotal placebo-controlled phase 3 studies started in November 2020; five clinical studies provided adult and adolescent clinical data for over 31,000 participants who were administered NVX-CoV2373. This extensive data has demonstrated a well-tolerated response to NVX-CoV2373 and high vaccine efficacy against mild, moderate, or severe COVID-19 using a two-dose series (Dunkle et al., 2022) [1], (Heath et al., 2021) [2], (Keech et al., 2020) [3], (Mallory et al., 2022) [4]. The most common adverse events seen after administration with NVX-CoV2373 were injection site tenderness, injection site pain, fatigue, myalgia, headache, malaise, arthralgia, nausea, or vomiting. In addition, immunogenicity against variants of interest (VOI) and variants of concern (VOC) was established with high titers of ACE2 receptor-inhibiting and neutralizing antibodies in these studies (EMA, 2022) [5], (FDA, 2023) [6]. Further studies on correlates of protection determined that titers of anti-Spike IgG and neutralizing antibodies correlated with efficacy against symptomatic COVID-19 established in clinical trials (p < 0.001 for recombinant protein vaccine and p = 0.005 for mRNA vaccines for IgG levels) (Fong et al., 2022) [7]. Administration of a booster dose of the recombinant protein vaccine approximately 6 months following the primary two-dose series resulted in substantial increases in humoral antibodies against both the prototype strain and all evaluated variants, similar to or higher than the antibody levels observed in phase 3 studies that were associated with high vaccine efficacy (Dunkle et al., 2022) [1], (Mallory et al., 2022) [4]. These findings, together with the well tolerated safety profile, support use of the recombinant protein vaccine as primary series and booster regimens
Oral priming with replicating adenovirus serotype 4 followed by subunit H5N1 vaccine boost promotes antibody affinity maturation and expands H5N1 cross-clade neutralization.
A Phase I trial conducted in 2009-2010 demonstrated that oral vaccination with a replication competent Ad4-H5 (A/Vietnam) vector with dosages ranging from 107-1011 viral particles was well tolerated. HA-specific T-cell responses were efficiently induced, but very limited hemagglutination-inhibiting (HI) humoral responses were measured. However, a single boost of Ad4-H5-Vtn vaccinated individuals with a unadjuvanted licensed H5N1 (A/Vietnam) subunit vaccine resulted in superior HI titers compared with unprimed subjects. In the current study, the impact of Ad4-H5 priming on the quality of the polyclonal humoral immune response was evaluated using a real-time kinetics assay by surface plasmon resonance (SPR). Total binding of serum polyclonal antibodies from the Ad4-H5-Vtn primed groups against both homologous H5N1-A/Vietnam/1194/2004 (clade 1) and heterologous A/Indonesia-5/2005 (clade 2.1) HA1 head domain was significantly higher compared with sera from individuals that received subunit H5N1 vaccination alone. SPR measurements also demonstrated that the antigen-antibody complex dissociation rates (a surrogate for antibody affinity) of serum antibodies against the HA1 of H5N1-A/Vietnam were significantly higher in the Ad4-H5 primed groups compared with those from the unprimed group. Furthermore, strong correlations were observed between the antibody affinities for HA1 (but not HA2) and the virus neutralization titers against the homologous strain and a panel of heterologous clade 2 H5N1 strains. These findings support the concept of oral prime-boost vaccine approaches against pandemic influenza to elicit long-term memory B cells with high affinity capable of rapid response to variant pandemic viruses likely to emerge and adapt to human transmissions
- …