16 research outputs found

    Lattice-Boltzmann hydrodynamics of anisotropic active matter

    Get PDF
    A plethora of active matter models exist that describe the behavior of self-propelled particles (or swimmers), both with and without hydrodynamics. However, there are few studies that consider shape-anisotropic swimmers and include hydrodynamic interactions. Here, we introduce a simple method to simulate self-propelled colloids interacting hydrodynamically in a viscous medium using the lattice-Boltzmann technique. Our model is based on raspberry-type viscous coupling and a force/counter-force formalism which ensures that the system is force free. We consider several anisotropic shapes and characterize their hydrodynamic multipolar flow field. We demonstrate that shape-anisotropy can lead to the presence of a strong quadrupole and octupole moments, in addition to the principle dipole moment. The ability to simulate and characterize these higher-order moments will prove crucial for understanding the behavior of model swimmers in confining geometries.Comment: 11 pages, 3 figures, 3 table

    Plasminogen Activator Inhibitor-1 Promotes Neutrophil Infiltration and Tissue Injury on Ischemia–Reperfusion

    Get PDF
    Objective Ischemia-reperfusion (I/R) injury significantly contributes to organ dysfunction and failure after myocardial infarction, stroke, and transplantation. In addition to its established role in the fibrinolytic system, plasminogen activator inhibitor-1 has recently been implicated in the pathogenesis of I/R injury. The underlying mechanisms remain largely obscure. Approach and Results Using different in vivo microscopy techniques as well as ex vivo analyses and in vitro assays, we identified that plasminogen activator inhibitor-1 rapidly accumulates on microvascular endothelial cells on I/R enabling this protease inhibitor to exhibit previously unrecognized functional properties by inducing an increase in the affinity of 2 integrins in intravascularly rolling neutrophils. These events are mediated through low-density lipoprotein receptor-related protein-1 and mitogen-activated protein kinase-dependent signaling pathways that initiate intravascular adherence of these immune cells to the microvascular endothelium. Subsequent to this process, extravasating neutrophils disrupt endothelial junctions and promote the postischemic microvascular leakage. Conversely, deficiency of plasminogen activator inhibitor-1 effectively reversed leukocyte infiltration, microvascular dysfunction, and tissue injury on experimental I/R without exhibiting side effects on microvascular hemostasis. Conclusions Our experimental data provide novel insights into the nonfibrinolytic properties of the fibrinolytic system and emphasize plasminogen activator inhibitor-1 as a promising target for the prevention and treatment of I/R injury

    Calculation of the cable-platform collision-free total orientation workspace of cable-driven parallel robots

    No full text
    The large workspace of cable-driven parallel robots is one of their main benefits over conventional parallel robots with rigid links. Therefore, it is crucial to measure its size and analyze its constraints. One of the limits are collisions between the cables and the platform of the robot. They can damage the robot and cause malfunctioning of its control algorithms. In the literature, methods for the detection of this collision type only consider the constant orientation workspace and are ill-suited for platform geometry data supplied from a CAD model. This paper presents a new approach for the approximation of the cable-platform collision-free total orientation workspace with various platform orientation sets. The collision detection is based on a convex collision cone data structure that precisely extracts the relevant information for collision detection from the platform geometry data. This method is compatible with various workspace approximation algorithms to facilitate its integration into the design process of cable-driven parallel robots. It is tested on the IPAnema 3 cable robot geometry and its performance is evaluated in terms of computation time

    A Laser-Based Direct Cable Length Measurement Sensor for CDPRs

    No full text
    Accuracy improvement is an important research topic in the field of cable-driven parallel robots (CDPRs). One reason for inaccuracies of CDPRs are deviations in the cable lengths. Such deviations can be caused by the elongation of the cable due to its elasticity or creep behavior. For most common CDPRs, the cable lengths are controlled using motor encoders of the winches, without feedback about the actual elongation of the cables. To address this problem, this paper proposes a direct cable length measurement sensor based on a laser distance sensor. We present the mechanical design, the first prototype and an experimental evaluation. As a result, the measurement principle works well and the accuracy of the measured cable lengths is within −2.32 mm to +1.86 mm compared to a range from −5.19 mm to +6.02 mm of the cable length set with the motor encoders. The standard deviation of the cable length error of the direct cable length measurement sensor is 58% lower compared to the one set with the motor encoders. Equipping all cables of the cable robot with direct cable length measurement sensors results in the possibility to correct cable length deviations and thus increase the accuracy of CDPRs. Furthermore, it enables new possibilities like the automatic recalibration of the home pose

    Force-Sensor-Free Implementation of a Hybrid Position–Force Control for Overconstrained Cable-Driven Parallel Robots

    Get PDF
    This paper proposes a hybrid position–force control strategy for overconstrained cable-driven parallel robots (CDPRs). Overconstrained CDPRs have more cables (m) than degrees of freedom (n), and the idea of the proposed controller is to control n cables in length and the other m−n ones in force. Two controller implementations are developed, one using the motor torque and one using the motor following-error in the feedback loop for cable force control. A friction model of the robot kinematic chain is introduced to improve the accuracy of the cable force estimation. Compared to similar approaches available in the literature, the novelty of the proposed control strategy is that it does not rely on force sensors, which reduces the hardware complexity and cost. The developed control scheme is compared to classical methods that exploit force sensors and to a pure inverse kinematic controller. The experimental results show that the new controller provides good tracking of the desired cable forces, maintaining them within the given bounds. The positioning accuracy and repeatability are similar those obtained with the other controllers. The new approach also allows an online switch between position and force control of cables

    Application of dried urine spots (DUS) for non-targeted quadrupole time-of-flight drug screening.

    No full text
    The use of dried urine spots (DUS) can simplify sample handling, shipment, and storage when compared to liquid urine samples. To prepare DUS, a small amount of urine is pipetted on a filter paper card. The subsequent drying of the specimen can prevent the post-sampling formation or degradation of substances (e.g. caused by bacteria). To evaluate the potential of DUS screening, 17 authentic urine samples, containing a broad range of substances, were extracted and analyzed on a Sciex 5600 TOF instrument using a non-targeted screening and library searching approach. The screening results were compared to the analysis of the same urine sample in liquid form, using the same high resolution liquid chromatography quadrupole time-of-flight mass spectrometry method. More than 65 different legal and illegal drugs were successfully identified within the investigated 17 urine samples using the DUS screening approach. When compared to the analysis of liquid urine, the following compounds could not be identified: 1x ecgonine methyl ester, 1x nicotine, 1x promazine, 1x 11-Nor-9-carboxy-Δ9-tetrahydrocannabinol. Overall, 95.2% of the target substances that have been detected in liquid urine were identified correctly using the DUS approach. In conclusion, DUS screening offers a simple, cost-effective, and easier sample handling alternative to the traditional use of liquid urine and provides detection of the most important substances for forensic requirements. Furthermore, the DUS sample preparation can be fully automated (sample documentation, internal standard application, and extraction)

    Plasminogen Activator Inhibitor-1 Promotes Neutrophil Infiltration and Tissue Injury on Ischemia–Reperfusion

    No full text
    Objective Ischemia-reperfusion (I/R) injury significantly contributes to organ dysfunction and failure after myocardial infarction, stroke, and transplantation. In addition to its established role in the fibrinolytic system, plasminogen activator inhibitor-1 has recently been implicated in the pathogenesis of I/R injury. The underlying mechanisms remain largely obscure. Approach and Results Using different in vivo microscopy techniques as well as ex vivo analyses and in vitro assays, we identified that plasminogen activator inhibitor-1 rapidly accumulates on microvascular endothelial cells on I/R enabling this protease inhibitor to exhibit previously unrecognized functional properties by inducing an increase in the affinity of 2 integrins in intravascularly rolling neutrophils. These events are mediated through low-density lipoprotein receptor-related protein-1 and mitogen-activated protein kinase-dependent signaling pathways that initiate intravascular adherence of these immune cells to the microvascular endothelium. Subsequent to this process, extravasating neutrophils disrupt endothelial junctions and promote the postischemic microvascular leakage. Conversely, deficiency of plasminogen activator inhibitor-1 effectively reversed leukocyte infiltration, microvascular dysfunction, and tissue injury on experimental I/R without exhibiting side effects on microvascular hemostasis. Conclusions Our experimental data provide novel insights into the nonfibrinolytic properties of the fibrinolytic system and emphasize plasminogen activator inhibitor-1 as a promising target for the prevention and treatment of I/R injury

    Stable colloidal quantum dot inks enable inkjet-printed high-sensitivity infrared photodetectors

    No full text
    Abstract Colloidal quantum dots (CQDs) have recently gained attention as materials for manufacturing optoelectronic devices in view of their tunable light absorption and emission properties and compatibility with low-temperature thin-film manufacture. The realization of CQD inkjet-printed infrared photodetectors has thus far been hindered by incompatibility between the chemical processes that produce state-of-the-art CQD solution-exchanged inks and the requirements of ink formulations for inkjet materials processing. To achieve inkjet-printed CQD solids with a high degree of reproducibility, as well as with the needed morphological and optoelectronic characteristics, we sought to overcome the mismatch among these processing conditions. In this study, we design CQD inks by simultaneous evaluation of requirements regarding ink colloidal stability, jetting conditions, and film morphology for different dots and solvents. The new inks remain colloidally stable, achieved through a design that suppresses the reductant properties of amines on the dots’ surface. After drop ejection from the nozzle, the quantum dot material is immobilized on the substrate surface due to the rapid evaporation of the low boiling point amine-based compound. Concurrently, the high boiling point solvent allows for the formation of a thin film of high uniformity, as is required for the fabrication of high-performance IR photodetectors. We fabricate inkjet-printed photodetectors exhibiting the highest specific detectivities reported to date (above 10¹² Jones across the IR) in an inkjet-printed quantum dot film. As a patternable CMOS-compatible process, the work offers routes to integrated sensing devices and systems
    corecore