629 research outputs found

    A comprehensive dataset for the thermal conductivity of ice Ih for application to planetary ice shells

    No full text
    Contemporary models representing the thermal conductivity of ice Ih as a function of temperature are based on data from published experiments that span over a century. Each model is derived using specific datasets with distinct experimental setups, temperature ranges, and uncertainties. Model errors introduced by inaccurate digitization and biased datapoints are challenging to trace due to a lack of transparency of the primary data. This dataset is a collection of published thermal conductivity data for ice Ih, including both tabulated and digitized data, presented in the original units. Specific samples or pressure conditions are noted where applicable. The dataset also includes a survey of published thermal conductivity models, providing the valid temperature range, accuracy and uncertainty (where noted in the original publication), and the primary data sources. Importantly, the dataset includes notes that were contained in the original publication or subsequent publications that provide additional context for the data. This dataset is used to derive a new thermal conductivity model which best represents the thermal conductivity of ice Ih for temperatures greater than 30 K. Statistics are provided to evaluate the fit of each thermal conductivity model in the survey of published models to the comprehensive dataset presented here. This dataset is constructed in support of the work “New insights into temperature-dependent ice properties and their effect on ice shell convection for icy ocean worlds” [1]

    Dynamics of Mixed Clathrate-Ice Shells on Ocean Worlds

    No full text
    International audienceThe habitability of oceans within icy worlds depends on material and heat transport through their outer ice shells. Previous work shows a methane clathrate layer at the upper surface of the ice shell of Titan thickens the convecting region, while on Pluto a clathrate layer at the base of the ice shell hinders convection. In this way, the dynamics of clathrate-ice shells may be essential to the thermal evolution and habitability of ocean worlds. However, studies to date have not addressed the dynamics that determine the location of clathrates within the ice shell. Here, we show that, in contrast to previous studies, clathrates accumulating at the base of the ice shell are entrained throughout the shell. Clathrates are stiffer than ice. As a result, entrainment slows convection and thickens the conductive lid across a range of ocean worlds, potentially preserving sub-ice oceans but limiting avenues for material transport into them
    • …
    corecore