299 research outputs found
Analyse der Wirtschaftlichkeit von Kernfusionskraftwerken
Diese Arbeit untersucht die Wirtschaftlichkeit der Kernfusion in der zweiten Hälfte des 21. Jahrhunderts aus betriebswirtschaftlicher Perspektive. Die Kernfusion verspricht eine sichere, umweltfreundliche, nachhaltige CO2-freie Stromversorgung. In dieser Arbeit werden die Stromgestehungskosten von TOKAMAK-Fusionskraftwerken mit anderen Grundlasttechnologien verglichen. In einer Szenarioanalyse werden unterschiedliche Entwicklungen der technischen Performance von Fusionskraftwerken, der Höhe des Zinsniveaus, der Preise für Primärenergieträger, bei CO2-Emissionsrestriktionen sowie der gesellschaftlichen Akzeptanz von Spaltungskraftwerken betrachtet. Es wird gezeigt, dass Fusionskraftwerke aus Sicht eines gewinnorientierten Investors wirtschaftlich sein werden, wenn deren wissenschaftlich-technische Entwicklung überdurchschnittlich erfolgreich verläuft, die Preise für Primärenergieträger und CO2-Emissionszertifikate deutlich über dem heutigen Niveau liegen und es zu einem gesellschaftlichen Ausstieg aus der Kernspaltung kommt. Zusätzlich muss ein niedriges bis höchstens mittleres Zinsniveau bestehen. Daher ist es gut möglich, dass sich je nach Bedingungen auf den Kapitalmärkten in der zweiten Hälfte des 21. Jahrhunderts der Bau der ersten kommerziellen Fusionskraftwerke aufgrund zu hoher Zinsen einige Zeit verschiebt. In einer Wild-Cards-Analyse zeigt sich, dass es für die Wirtschaftlichkeit der Kernfusion von Vorteil ist sich von der Kernspaltung abzugrenzen. Insgesamt betrachtet scheint es wahrscheinlich, dass Kernfusionskraftwerke bei Erfüllung obig genannter ökonomischer und technologischer Rahmenbedingungen sowie bei gesellschaftlichem Willen innerhalb des 21. Jahrhunderts wirtschaftlich gebaut und betrieben werden können
Texturing of Soy Yoghurt Alternatives: Pectin Microgel Particles Serve as Inactive Fillers and Weaken the Soy Protein Gel Structure
Soy-based yoghurt alternatives were highly requested by consumers over the last few years. However, their texture does not always fulfil consumers’ demands as such yoghurt alternatives are often perceived as too firm or too soft, sandy, or fibrous. In order to improve the texture, fibres, for example, in the form of microgel particles (MGP), can be added to the soy matrix. MGP are expected to interact with soy proteins, creating different microstructures and, thus, different gel properties after fermentation. In this study, pectin-based MGP were added in different sizes and concentrations, and the soy gel properties after fermentation were characterised. It was found that the addition of 1 wt.% MGP influenced neither the flow behaviour nor the tribological/lubrication properties of the soy matrix, regardless of the MGP size. However, at higher MGP concentrations (3 and 5 wt.%), the viscosity and yield stress were reduced, the gel strength and cross-linking density decreased, and the water-holding capacity was reduced. At 5 wt.%, strong and visible phase separation occurred. Thus, it can be concluded that apple pectin-based MGP serve as inactive fillers in fermented soy protein matrices. They can, therefore, be used to weaken the gel matrix purposely to create novel microstructures
A new regime of anomalous penetration of relativistically strong laser radiation into an overdense plasma
It is shown that penetration of relativistically intense laser light into an
overdense plasma, accessible by self-induced transparency, occurs over a finite
length only. The penetration length depends crucially on the overdense plasma
parameter and increases with increasing incident intensity after exceeding the
threshold for self-induced transparency. Exact analytical solutions describing
the plasma-field distributions are presented.Comment: 6 pages, 2 figures in 2 separate eps files; submitted to JETP Letter
High-order numerical method for the nonlinear Helmholtz equation with material discontinuities in one space dimension
The nonlinear Helmholtz equation (NLH) models the propagation of
electromagnetic waves in Kerr media, and describes a range of important
phenomena in nonlinear optics and in other areas. In our previous work, we
developed a fourth order method for its numerical solution that involved an
iterative solver based on freezing the nonlinearity. The method enabled a
direct simulation of nonlinear self-focusing in the nonparaxial regime, and a
quantitative prediction of backscattering. However, our simulations showed that
there is a threshold value for the magnitude of the nonlinearity, above which
the iterations diverge. In this study, we numerically solve the one-dimensional
NLH using a Newton-type nonlinear solver. Because the Kerr nonlinearity
contains absolute values of the field, the NLH has to be recast as a system of
two real equations in order to apply Newton's method. Our numerical simulations
show that Newton's method converges rapidly and, in contradistinction with the
iterations based on freezing the nonlinearity, enables computations for very
high levels of nonlinearity. In addition, we introduce a novel compact
finite-volume fourth order discretization for the NLH with material
discontinuities.The one-dimensional results of the current paper create a
foundation for the analysis of multi-dimensional problems in the future.Comment: 47 pages, 8 figure
Recommended from our members
Modeling and simulation technology readiness levels.
This report summarizes the results of an effort to establish a framework for assigning and communicating technology readiness levels (TRLs) for the modeling and simulation (ModSim) capabilities at Sandia National Laboratories. This effort was undertaken as a special assignment for the Weapon Simulation and Computing (WSC) program office led by Art Hale, and lasted from January to September 2006. This report summarizes the results, conclusions, and recommendations, and is intended to help guide the program office in their decisions about the future direction of this work. The work was broken out into several distinct phases, starting with establishing the scope and definition of the assignment. These are characterized in a set of key assertions provided in the body of this report. Fundamentally, the assignment involved establishing an intellectual framework for TRL assignments to Sandia's modeling and simulation capabilities, including the development and testing of a process to conduct the assignments. To that end, we proposed a methodology for both assigning and understanding the TRLs, and outlined some of the restrictions that need to be placed on this process and the expected use of the result. One of the first assumptions we overturned was the notion of a ''static'' TRL--rather we concluded that problem context was essential in any TRL assignment, and that leads to dynamic results (i.e., a ModSim tool's readiness level depends on how it is used, and by whom). While we leveraged the classic TRL results from NASA, DoD, and Sandia's NW program, we came up with a substantially revised version of the TRL definitions, maintaining consistency with the classic level definitions and the Predictive Capability Maturity Model (PCMM) approach. In fact, we substantially leveraged the foundation the PCMM team provided, and augmented that as needed. Given the modeling and simulation TRL definitions and our proposed assignment methodology, we conducted four ''field trials'' to examine how this would work in practice. The results varied substantially, but did indicate that establishing the capability dependencies and making the TRL assignments was manageable and not particularly time consuming. The key differences arose in perceptions of how this information might be used, and what value it would have (opinions ranged from negative to positive value). The use cases and field trial results are included in this report. Taken together, the results suggest that we can make reasonably reliable TRL assignments, but that using those without the context of the information that led to those results (i.e., examining the measures suggested by the PCMM table, and extended for ModSim TRL purposes) produces an oversimplified result--that is, you cannot really boil things down to just a scalar value without losing critical information
A High-Order Numerical Method for the Nonlinear Helmholtz Equation in Multidimensional Layered Media
We present a novel computational methodology for solving the scalar nonlinear
Helmholtz equation (NLH) that governs the propagation of laser light in Kerr
dielectrics. The methodology addresses two well-known challenges in nonlinear
optics: Singular behavior of solutions when the scattering in the medium is
assumed predominantly forward (paraxial regime), and the presence of
discontinuities in the % linear and nonlinear optical properties of the medium.
Specifically, we consider a slab of nonlinear material which may be grated in
the direction of propagation and which is immersed in a linear medium as a
whole. The key components of the methodology are a semi-compact high-order
finite-difference scheme that maintains accuracy across the discontinuities and
enables sub-wavelength resolution on large domains at a tolerable cost, a
nonlocal two-way artificial boundary condition (ABC) that simultaneously
facilitates the reflectionless propagation of the outgoing waves and forward
propagation of the given incoming waves, and a nonlinear solver based on
Newton's method.
The proposed methodology combines and substantially extends the capabilities
of our previous techniques built for 1Dand for multi-D. It facilitates a direct
numerical study of nonparaxial propagation and goes well beyond the approaches
in the literature based on the "augmented" paraxial models. In particular, it
provides the first ever evidence that the singularity of the solution indeed
disappears in the scalar NLH model that includes the nonparaxial effects. It
also enables simulation of the wavelength-width spatial solitons, as well as of
the counter-propagating solitons.Comment: 40 pages, 10 figure
Electromagnetic energy penetration in the self-induced transparency regime of relativistic laser-plasma interactions
Two scenarios for the penetration of relativistically intense laser radiation
into an overdense plasma, accessible by self-induced transparency, are
presented. For supercritical densities less than 1.5 times the critical one,
penetration of laser energy occurs by soliton-like structures moving into the
plasma. At higher background densities laser light penetrates over a finite
length only, that increases with the incident intensity. In this regime
plasma-field structures represent alternating electron layers separated by
about half a wavelength by depleted regions.Comment: 9 pages, 4 figures, submitted for publication to PR
- …