53 research outputs found
A standards-based grading model to predict students\u27 success in a first-year engineering course
Using predictive modeling methods, it is possible to identify at-risk students early in the semester and inform both the instructors and the students. While some universities have started to use standards-based grading, which has educational advantages over common score-based grading, at–risk prediction models have not been adapted to reap the benefits of standards-based grading. In this study, seven prediction models were compared to identify at-risk students in a course that used standards-based grading. When identifying at-risk students, it is important to minimize false negative (i.e., type II) errors while not increasing false positive (i.e., type I) errors significantly. To increase the generalizability of the models and accuracy of the predictions, feature selection methods were used to reduce the number of variables used in each model. The Naive Bayes Classifier and an Ensemble model using a combination of models (i.e., Support Vector Machine, K-Nearest Neighbors, and Naive Bayes Classifier) had the best results among the seven tested models. This study identified possible threshold concepts and learning objectives that are important to students’ success in the course, and learning objectives that are not correlated with student success in the course
Comparing students\u27 solutions to an open-ended problem in an introductory programming course with and without explicit modeling interventions
Engineers must understand how to build, apply, and adapt various types of models in order to be successful. Throughout undergraduate engineering education, modeling is fundamental for many core concepts, though it is rarely explicitly taught. There are many benefits to explicitly teaching modeling, particularly in the first years of an engineering program. The research questions that drove this study are: (1) How do students\u27 solutions to a complex, open-ended problem (both written and coded solutions) develop over the course of multiple submissions? and (2) How do these developments compare across groups of students that did and did not participate in a course centered around modeling?. Students\u27 solutions to an open-ended problem across multiple sections of an introductory programming course were explored. These sections were all divided across two groups: (1) experimental group - these sections discussed and utilized mathematical and computational models explicitly throughout the course, and (2) comparison group - these sections focused on developing algorithms and writing code with a more traditional approach. All sections required students to complete a common open-ended problem that consisted of two versions of the problem (the first version with smaller data set and the other a larger data set). Each version had two submissions - (1) a mathematical model or algorithm (i.e. students\u27 written solution potentially with tables and figures) and (2) a computational model or program (i.e. students\u27 MATLAB code). The students\u27 solutions were graded by student graders after completing two required training sessions that consisted of assessing multiple sample student solutions using the rubrics to ensure consistency across grading. The resulting assessments of students\u27 works based on the rubrics were analyzed to identify patterns students\u27 submissions and comparisons across sections. The results identified differences existing in the mathematical and computational model development between students from the experimental and comparison groups. The students in the experimental group were able to better address the complexity of the problem. Most groups demonstrated similar levels and types of change across the submissions for the other dimensions related to the purpose of model components, addressing the users\u27 anticipated needs, and communicating their solutions. These findings help inform other researchers and instructors how to help students develop mathematical and computational modeling skills, especially in a programming course. This work is part of a larger NSF study about the impact of varying levels of modeling interventions related to different types of models on students\u27 awareness of different types of models and their applications, as well as their ability to apply and develop different types of models
Academic and Demographic Cluster Analysis of Engineering Student Success
Contribution: This article uses student semester grade point average (GPA) as a measure of student success to take into account the temporal effects in student success. The findings highlight the student performance based on their demographic status and use of university resources such as financial aid. College campuses should not only increase current resources but also raise awareness of current resources and make them more accessible (e.g., easier to apply or automatic applications). This is especially important for some demographics such as Hispanic first-generation students. Background: Higher education institutions are facing retention and graduation problems. One way to improve this is by understanding why students are not academically successful. Research Questions: In this study, demographic information and past academic records were analyzed to understand patterns of student success. Methodology: A cluster analysis was conducted to understand groups of students based on academic performance and demographic information. Examples of these factors are enrollment status, financial status, first-generation status, housing status, and transfer status. For the purpose of getting more accurate results, the students were separated into two different groups according to their admission status: 1) freshman and 2) transfer. Findings: The results indicate Hispanic, first-generation, low-income students are not likely to apply for financial aid although they are eligible. They have lower GPA and take fewer units per semester than other students. This can cause delayed graduation and accumulating more debt
Remote sensing of sea ice properties and dynamics using SAR interferometry
Landfast ice is attached to the coastline and islands and stays immobile over most of the ice season. It is an important element of polar ecosystems and plays a vital role as a marine habitat and in life of local people and economy through offshore technology. Landfast ice is routinely used for on-ice traffic, tourism, and industry, and it protects coasts from storms in winter from erosion. However, landfast ice can break or experience deformation in order of centimeters to meters, which can be dangerous for the coastline and man-made structures, beacons, on-ice traffic, and represents a safety risk for working on the ice and local people. Therefore, landfast ice deformation and stability are important topics in coastal engineering and sea ice modeling. In the framework of this dissertation, InSAR (SAR Interferometry) technology has been applied for deriving landfast ice displacements (publication I), and mapping sea ice morphology, topography and its temporal change (publication III). Also, advantages of InSAR remote sensing in sea ice classification compared to backscatter intensity were demonstrated (publications II and IV).
In publication I, for the first time, Sentinel-1 repeat-pass InSAR data acquired over the landfast ice areas were used to study the landfast ice displacements in the Gulf of Bothnia. An InSAR pair with a temporal baseline of 12 days acquired in February 2015 was used. In the study, the surface of landfast ice was stable enough to preserve coherence over the 12-day period, enabling analysis of the interferogram. The advantage of this long temporal baseline is in separating the landfast ice from drift ice and detecting long-term trends in deformation maps. The interferogram showed displacements of landfast ice on the order of 40 cm. The main factor seemed to be compression by drift ice, which was driven against the landfast ice boundary by strong winds from southwest.
Landfast ice ridges can hinder ship navigation, but grounded ridges help to stabilize the ice cover. In publication III, ridge formation and displacements in the landfast ice near Utqiaġvik, Alaska were examined. The phase signatures of two single-pass bistatic X-band SAR (Synthetic Aperture Radar) image pairs acquired by TanDEM-X (TerraSAR-X add-on for Digital Elevation Measurements) satellite on 13 and 24 January 2012 were analyzed. Altogether six cases were identified with ridge displacement in four and formation in two cases under onshore compression. The ridges moved approximately 0.6 and 3.7 km over the study area and ridge formation reached up to 1 meter in upward. The results well corresponded with the locations identified as convergence zones retrieved from the drift algorithm generated by a SAR-based sea ice-tracking algorithm, backscatter intensity images and coastal radar imagery. This method could potentially be used in future to evaluate sea ice stability and ridge formation.
A bistatic InSAR pair acquired by the TanDEM-X mission in March 2012 over the Bothnian Bay was used in two further studies (publications II and IV). The potential of X-band InSAR imagery for automated sea ice classification was evaluated. The first results were presented in publication II and the data were further elaborated in publication IV. The backscatter intensity, coherence magnitude and InSAR-phase features, as well as their different combinations, were used as the informative features in classification experiments. In publication II, the purpose was to assess ice properties on the scale used in ice charting, with ice types based on ice concentration and sea ice morphology, while in publication IV, a detailed small-scale analysis was performed. In addition, the sampling design was different in these publications. In publication II, to achieve the best discrimination between open water and several sea-ice types, RF (Random Forests) and ML (Maximum likelihood) classifiers were employed. The best overall accuracies were achieved by combining backscatter intensity & InSAR-phase using RF approach and backscatter intensity & coherence-magnitude using ML approach. The results showed the advantage of adding InSAR features to backscatter intensity for sea ice classification. In the further study (publication IV), a set of state-of-the-art classification approaches including ML, RF and SVM (Support Vector Machine) classifiers were used to achieve the best discrimination between open water and several sea-ice types. Adding InSAR-phase and coherence magnitude to backscatter intensity improved the OA (Overall Accuracy) compared to using only backscatter intensity. The RF and SVM algorithms gave somewhat larger OA compared to ML at the expense of a somewhat longer processing time. Results of publications II and IV demonstrate InSAR features have potential to improve sea ice classification. InSAR could be used by operational ice services to improve mapping accuracy of automated sea ice charting with statistical and machine learning classification approaches.Viime vuosikymmeninä satelliittivälitteisestä SAR-tutkasta on tullut erittäin tärkeä työkalu merijään kaukokartoituksessa. Tämän tutka perustuu sähkömagneettisten aaltojen sirontaan kiinnostavasta kohteesta takaisin tutkaan, mitä seuraa signaalin voimakkuuden mittaaminen. SAR-tutkat käyttävät synteettistä antennia, joka perustuu satelliitin liikkeeseen, mikä mahdollistaa tarkkojen, korkean erotuskyvyn kuvien tuottamisen. SAR-anturit mittaavat myös signaalin vaihetta, jota käytetään interferometria tekniikassa pinnan topografian ja siirtymien laskemiseen eri sovelluksissa, kuten maan muodonmuutoksissa, tarkassa kartoituksessa, maanjäristyksen arvioinnissa ja tulivuorenpurkauksien tarkkailussa. Interferometri tekniikkaa käytettiin tässä opinnäytetyössä pienten jäänsiirtymien analysointiin kiintojäävyöhykkeellä, joka on kiinni rantaviivassa ja saarissa eikä juuri liiku tuulien tai virtausten mukana. Kiintojääalueilla on pohjaan tarttuneita jäävalleja, jotka edistävät kiintojääpeitteen vakautumista. Kiintojäällä on tärkeä rooli merellisenä elinympäristönä, maankäytön kysymyksissä sekä paikallisten ihmisten elämässä ja meritekniikassa. Kiintojää voi murtua liikahdella useita metrejä, mikä voi olla vaarallista rakenteille, majakoille ja jäällä liikkujille.
Tässä väitöskirjassa Sentinel-1A ja TanDEM-X satelliitteja ja interferometri tekniikkaa on käytetty arktisilla alueilla ja Itämerellä mittaamaan kiintojään muodonmuutoksia ja siirtymiä sekä niihin liittyviä mekanismeja. Lisäksi on tutkittu automaattista merijääluokitusta interferometrian apuohjelmiston avulla, mikä laajentaa operatiivisten merijääpalvelujen tutkahavaintojen käyttöä. Sentinel-1A:n avulla voitiin tarkastella 12 päivän pituisia muutoksia Pohjanlahden kiintojäävyöhykkeellä, kun interferometria tekniikka mittasi voimakkaan tuulen aiheuttaman 40 cm:n siirtymiä. Pohjoisella jäämerellä voitiin tunnistaa jäävallien siirtymiä ja muodostumia. Vallit siirtyivät noin 0,6 ja 3,7 km matkoja ja muodostuessaan ne kasvoivat metrin korkeuteen. Interferometri tekniikan lisääminen tutkakuvauksen analyysiin osoitti potentiaalin parantaa automaattisen merijääkartoituksen kartoituksen tarkkuutta tilastollisilla ja koneoppimiseen perustuvan luokittelun menetelmillä. Tulevaisuuden työnä merijään luokituksessa ja vallitutkimuksissa olisi suositeltavaa käyttää erilaisia ja useampia tutkakuvauksen geometrioita sekä erilaisia jääolosuhteita eri sääolosuhteiden vallitessa
Change in student understanding of modeling during first year engineering courses
All engineers must be able to apply and create models to be effective problem solvers, critical thinkers, and innovative designers. To be more successful in their studies and careers, students need a foundational knowledge about models. An adaptable approach can help students develop their modeling skills across a variety of modeling types, including physical models, mathematical models, logical models, and computational models. Physical models (e.g., prototypes) are the most common type of models that engineering students identify and discuss during the design process. There is a need to explicitly focus on varying types of models, model application, and model development in the engineering curriculum, especially on mathematical and computational models. This NSF project proposes two approaches to creating a holistic modeling environment for learning at two universities. These universities require different levels of revision to the existing first-year engineering courses or programs. The proposed approaches change to a unified language and discussion around modeling with the intent of contextualizing modeling as a fundamental tool within engineering. To evaluate student learning on modeling in engineering, we conducted pre and post surveys across three different first-year engineering courses at these two universities with different student demographics. The comparison between the pre and post surveys highlighted student learning on engineering modeling based on different teaching and curriculum change approaches
Student Awareness of Models in First-Year Engineering Courses
Contribution: This study assesses more than 800 students\u27 awareness of engineering model types before and after taking two first-year engineering courses across two semesters and evaluates the effect of each course. Background: All engineers must be able to apply and create models to be effective problem solvers, critical thinkers, and innovative designers. To help them develop these skills, as a first step, it is essential to assess how to increase students\u27 awareness of engineering models. According to Bloom\u27s taxonomy, the lower remember and understand levels, which encompass awareness, are necessary for achieving the higher levels, such as apply, analyze, evaluate, and create. Research Questions: To what extent did student awareness of model types change after taking introductory engineering courses? To what extent did student awareness of model types differ by course or semester? Methodology: In this study, a survey was designed and administered at the beginning and end of the semester in two first-year engineering courses during two semesters in a mid-sized private school. The survey asked students questions about their definition of engineering modeling and different types of models. Findings: Overall, student awareness of model types increased from the beginning of the semester toward the end of the semester, across both semesters and courses. There were some differences between course sections, however, the students\u27 awareness of the models at the end of the academic year was similar for both groups
A Study of Landfast Ice with Sentinel-1 Repeat-Pass Interferometry over the Baltic Sea
Mapping of fast ice displacement and investigating sea ice rheological behavior is a major open topic in coastal ice engineering and sea ice modeling. This study presents first results on Sentinel-1 repeat-pass space borne synthetic aperture radar interferometry (InSAR) in the Gulf of Bothnia over the fast ice areas. An InSAR pair acquired in February 2015 with a temporal baseline of 12 days has been studied here in detail. According to our results, the surface of landfast ice in the study area was stable enough to preserve coherence over the 12-day baseline, while previous InSAR studies over the fast ice used much shorter temporal baselines. The advantage of longer temporal baseline is in separating the fast ice from drift ice and detecting long term trends in deformation maps. The interferogram showed displacement of fast ice on the order of 40 cm in the study area. Parts of the displacements were attributed to forces caused by sea level tilt, currents, and thermal expansion, but the main factor of the displacement seemed to be due to compression of the drift ice driven by southwest winds with high speed. Further interferometric phase and the coherence measurements over the fast ice are needed in the future for understanding sea ice mechanism and establishing sustainability of the presented InSAR approach for monitoring dynamics of the landfast ice with Sentinel-1 data.Peer reviewe
Types of Models Identified by First-Year Engineering Students
This is a Complete Research paper. Understanding models is important for engineering students, but not often taught explicitly in first-year courses. Although there are many types of models in engineering, studies have shown that engineering students most commonly identify prototyping or physical models when asked about modeling. In order to evaluate students\u27 understanding of different types of models used in engineering and the effectiveness of interventions designed to teach modeling, a survey was developed. This paper describes development of a framework to categorize the types of engineering models that first-year engineering students discuss based on both previous literature and students\u27 responses to survey questions about models. In Fall 2019, the survey was administered to first-year engineering students to investigate their awareness of types of models and understanding of how to apply different types of models in solving engineering problems. Students\u27 responses to three questions from the survey were analyzed in this study: 1. What is a model in science, technology, engineering, and mathematics (STEM) fields?, 2. List different types of models that you can think of., and 3. Describe each different type of model you listed. Responses were categorized by model type and the framework was updated through an iterative coding process. After four rounds of analysis of 30 different students\u27 responses, an acceptable percentage agreement was reached between independent researchers coding the data. Resulting frequencies of the various model types identified by students are presented along with representative student responses to provide insight into students\u27 understanding of models in STEM. This study is part of a larger project to understand the impact of modeling interventions on students\u27 awareness of models and their ability to build and apply models
Undergraduate and Graduate Teaching Assistants\u27 Perceptions of Their Responsibilities - Factors that Help or Hinder
Effective teaching assistants (TAs) are crucial for effective student learning. This is especially true in science, technology, engineering, and mathematics (STEM) programs, where TAs are enabling large programs to transition to more student-centered learning environments. To ensure that TAs are able to support these types of learning environments, their perspectives of training, their abilities, and other work related aspects must be understood. In this paper a survey that was created based on interviews conducted with eight TAs is discussed. The survey has four primary categories of content that are critical for understanding TAs\u27 perspectives: (1) background, (2) motivation, (3) training, and (4) grading and feedback. This research team is first utilizing this survey at Purdue University to test for validity and reliability of the instrument, as well as identifying ways to improve the experiences and effectiveness of the First-Year Engineering Program\u27s TAs\u27 support system, training, hiring process, and any other relevant components of the infrastructure. The more generalizable goal of this research is to further develop this survey to be used by any STEM program as a diagnostic tool for identifying opportunities to enhance the TA support systems and therefore improve student learning
Automated SEA ICE Classification Over the Baltic SEA using Multiparametric Features of Tandem-X Insar Images
In this study, bistatic interferometric Synthetic Aperture Radar (InSAR) data acquired by the TanDEM-X mission were used for automated classification of sea ice over the Baltic Sea, in the Bothnic Bay. A scene acquired in March of 2012 was used in the study. Backscatter-intensity, coherence-magnitude and InSAR-phase, as well as their different combinations, were used as informative features in several classification approaches. In order to achieve the best discrimination between open water and several sea ice types (new ice, thin smooth ice, close ice, very close ice, ridged ice, heavily ridged ice and ship-track), Random Forests (RF) and Maximum likelihood (ML) classifiers were employed. The best overall accuracies were achieved using combination of backscatter-intensity & InSAR-phase and backscatter-intensity & coherence-magnitude, and were 76.86% and 75.81% with RF and ML classifiers, respectively. Overall, the combination of backscatter-intensity & InSAR-phase with RF classifier was suggested due to the highest overall accuracy (OA) and smaller computing time in comparison to ML. In contrast to several earlier studies, we were able to discriminate water and the thin smooth ice.Peer reviewe
- …