727 research outputs found
Rainbow Thresholds
We extend a recent breakthrough result relating expectation thresholds and
actual thresholds to include rainbow versions
Synthesis of novel double metal cyanide catalysts and polymerization of PO and CO2
Double metal cyanides (DMC) are a versatile group of complexes that find numerous applications in catalytic conversions, e.g. as catalysts for polycondensation of diols and diacids[1], for the ring-opening polymerization of epoxides[2] and their co- and terpolymerization with CO2[3] and cyclic anhydrides.[4] The DMC catalysts usually have a high selectivity; in case of propylene oxide ring opening polymerizations (and in contrast to e.g. alkali-based catalysts), products with low degrees of unsaturation and narrow molecular weight distributions are obtained. A major challenge in the application of DMC catalysts is that they generally feature an induction period of several minutes up to hours during which no substantial propagation is observed. The length of the induction period is affected for instance by the catalyst preparation itself but also by the presence of impurities.[6,7] Up to this date, no reliable model exists that allows the prediction of the length of this activation step. This does not only result in decreasing overall space-time yield but also is a serious safety issue as the spontaneous initiation at the end of the induction period causes an increase in temperature due to the exothermic polymerization reactions.
Please click Additional Files below to see the full abstract
Characterizing catalyst performance of DMCs on PO homopolymerization
Double metal cyanide (DMC) complexes are known effective catalysts for the ring-opening polymerization of propylene oxide to generate polyether polyols (Scheme 1).1,2 The high activity of DMC catalysts relative to basic alkaline catalysts eliminates the need for expensive removal of residual catalyst from the product. Furthermore, the poly(propylene glycol) (PPG) products prepared by DMC catalysts have - contrary to products from alkaline catalysis - a low degree of unsaturation and narrow molecular weight distributions. Latter is advantageous with respect to the resulting low viscosities. A common challenge when applying DMC catalysts is the need for an activation procedure, leading to an induction period of unknown length (Figure 1).2,3 In a larger, usually semibatch process, PO monomer can only be added after the activation has been secured; the concentration of PO must not reach certain limits as its ring-opening is highly exothermal.
Please click Additional Files below to see the full abstract
Locally finite graphs and their localization numbers
We study the Localization game on locally finite graphs trees, where each of
the countably many vertices have finite degree. In contrast to the finite case,
we construct a locally finite tree with localization number for any choice
of positive integer . Our examples have uncountably many ends, and we show
that this is necessary by proving that locally finite trees with finitely or
countably many ends have localization number at most 2. Finally, as is the case
for finite graphs, we prove that any locally finite graph contains a
subdivision where one cop can capture the robber
The -visibility Localization Game
We study a variant of the Localization game in which the cops have limited
visibility, along with the corresponding optimization parameter, the
-visibility localization number , where is a non-negative
integer. We give bounds on -visibility localization numbers related to
domination, maximum degree, and isoperimetric inequalities. For all , we
give a family of trees with unbounded values. Extending results known
for the localization number, we show that for , every tree contains a
subdivision with . For many , we give the exact value of
for the Cartesian grid graphs, with the remaining cases
being one of two values as long as is sufficiently large. These examples
also illustrate that for all distinct choices of and
$j.
Fossil biomass preserved as graphitic carbon in a late paleoproterozoic banded iron formation metamorphosed at more than 550°C
Metamorphism is thought to destroy microfossils, partly through devolatilization and graphitization of biogenic organic matter. However, the extent to which there is a loss of molecular, elemental and isotope signatures from biomass during high-temperature metamorphism is not clearly established. We report on graphitic structures inside and coating apatite grains from the c. 1850 Ma Michigamme silicate banded iron formation from Michigan, metamorphosed above 550°C. Traces of N, S, O, H, Ca and Fe are preserved in this graphitic carbon and X-ray spectra show traces of aliphatic groups. Graphitic carbon has an expanded lattice around 3.6 Å, forms microscopic concentrically-layered and radiating polygonal flakes and has homogeneous δ13C values around −22‰, identical to bulk analyses. Graphitic carbon inside apatite is associated with nanometre-size ammoniated phyllosilicate. Precursors of these metamorphic minerals and graphitic carbon originated from ferruginous clayrich sediments with biomass. We conclude that graphite coatings and inclusions in apatite grains indicate fluid remobilization during amphibolite-facies metamorphism of precursor biomass. This new evidence fills in observational gaps of metamorphosed biomass into graphite and supports the existence of biosignatures in the highly metamorphosed iron formation from the Eoarchean Akilia Association, which dates from the beginning of the sedimentary rock record
- …