42 research outputs found

    GroupDroid: Automatically Grouping Mobile Malware by Extracting Code Similarities

    Get PDF
    As shown in previous work, malware authors often reuse portions of code in the development of their samples. Especially in the mobile scenario, there exists a phenomena, called piggybacking, that describes the act of embedding malicious code inside benign apps. In this paper, we leverage such observations to analyze mobile malware by looking at its similarities. In practice, we propose a novel approach that identifies and extracts code similarities in mobile apps. Our approach is based on static analysis and works by computing the Control Flow Graph of each method and encoding it in a feature vector used to measure similarities. We implemented our approach in a tool, GroupDroid, able to group mobile apps together according to their code similarities. Armed with GroupDroid, we then analyzed modern mobile malware samples. Our experiments show that GroupDroid is able to correctly and accurately distinguish different malware variants, and to provide useful and detailed information about the similar portions of malicious code

    Intrathecal versus peripheral inflammatory protein profile in MS patients at diagnosis: a comprehensive investigation on serum and CSF

    Get PDF
    Intrathecal inflammation plays a key role in the pathogenesis of multiple sclerosis (MS). To better elucidate its relationship with peripheral inflammation, we investigated the correlation between cerebrospinal fluid (CSF) and serum levels of 61 inflammatory proteins. Paired CSF and serum samples were collected from 143 treatment-naïve MS patients at diagnosis. A customized panel of 61 inflammatory molecules was analyzed by a multiplex immunoassay. Correlations between serum and CSF expression levels for each molecule were performed by Spearman's method. The expression of sixteen CSF proteins correlated with their serum expression (p-value < 0.001): only five molecules (CXCL9, sTNFR2, IFNα2, Pentraxin-3, and TSLP) showed a Rho value >0.40, suggesting moderate CSF/serum correlation. No correlation between inflammatory serum patterns and Qalb was observed. Correlation analysis of serum expression levels of these sixteen proteins with clinical and MRI parameters pinpointed a subset of five molecules (CXCL9, sTNFR2, IFNα2, IFNβ, and TSLP) negatively correlating with spinal cord lesion volume. However, following FDR correction, only the correlation of CXCL9 remained significant. Our data support the hypothesis that the intrathecal inflammation in MS only partially associates with the peripheral one, except for the expression of some immunomodulators that might have a key role in the initial MS immune response

    Ocrelizumab reduces cortical and deep grey matter loss compared to the S1P-receptor modulator in multiple sclerosis

    Get PDF
    Introduction: Ocrelizumab (OCR) and Fingolimod (FGL) are two high-efficacy treatments in multiple sclerosis which, besides their strong anti-inflammatory activity, may limit neurodegeneration. Aim: To compare the effect of OCR and FGL on clinical and MRI endpoints. Methods: 95 relapsing-remitting patients (57 OCR, 38 FGL) clinically followed for 36 months underwent a 3-Tesla MRI at baseline and after 24 months. The annualized relapse rate, EDSS, new cortical/white matter lesions and regional cortical and deep grey matter volume loss were evaluated. Results: OCR reduced the relapse rate from 0.48 to 0.04, FGL from 0.32 to 0.05 (both p < 0.001). Compared to FGL, OCR-group experienced fewer new white matter lesions (12% vs 32%, p = 0.005), no differences in new cortical lesions, lower deep grey matter volume loss (- 0.12% vs - 0.66%; p = 0.002, Cohen's d = 0.54), lower global cortical thickness change (- 0.45% vs - 0.70%; p = 0.036; d = 0.42) and reduced cortical thinning/volume loss in several regions of interests, including those of parietal gyrus (d-range = 0.65-0.71), frontal gyrus (d-range = 0.47-0.60), cingulate (d-range = 0.41-0.72), insula (d = 0.36), cerebellum (cortex d = 0.72, white matter d = 0.44), putamen (d = 0.35) and thalamus (d = 0.31). The effect on some regional thickness changes was confirmed in patients without focal lesions. Conclusions: When compared with FGL, patients receiving OCR showed greater suppression of focal MRI lesions accumulation and lower cortical and deep grey matter volume loss

    Increased NK Cell Count in Multiple Sclerosis Patients Treated With Dimethyl Fumarate: A 2-Year Longitudinal Study

    Get PDF
    Background: Dimethyl fumarate (DMF) is a disease-modifying drug for relapsing-remitting multiple sclerosis. Among others, DMF impedes immune activation by shifting the balance between inflammatory and regulatory cell types and by inducing apoptosis-triggered lymphopenia. Although the decrease in lymphocyte count is an early effect of the drug in several patients, the long-term impact on lymphocyte subsets is largely unknown.Methods: We performed a 2-years observational study on total lymphocyte count and subsets thereof by flow cytometry of peripheral blood of 38 multiple sclerosis patients in treatment with DMF. Data were collected at the beginning and after 3, 6, 12, and 24 months of therapy.Results: Total lymphocyte count decreased in relation to time of exposure to DMF. Mean absolute B cell count decreased by 34.1%(p < 0.001) within the first 3months of therapy and then remained stable over time. Mean absolute CD3(+) T cells count decrement reached 47.5% after 12 months of treatment ( p < 0.001). NK cells count showed a heterogeneous trend, increasing by 85.9%( p < 0.001) after 2 years of treatment. CD4(+) T cells and CD8(+) T cells substantially decreased, with a significant increase of CD4(+)/CD8(+) ratio during the first year of therapy.Conclusions: NK cells showed a heterogeneous behavior during DMF treatment with a significant increase over time. Since NK cells may also have a regulatory effect on immune system modulation, their increase during DMF treatment might play a role in the efficacy and safety of the drug

    Immune Response after COVID-19 mRNA Vaccination in Multiple Sclerosis Patients Treated with DMTs

    Get PDF
    The impact of disease-modifying therapies (DMTs) on the immune response to coronavirus disease-2019 (COVID-19) vaccines in persons with multiple sclerosis (pwMS) needs further elucidation. We investigated BNT162b2 mRNA COVID-19 vaccine effects concerning antibody seroconversion, inflammatory mediators' level and immunophenotype assessment in pwMS treated with cladribine (c-pwMS, n = 29), fingolimod (f-pwMS, n = 15) and ocrelizumab (o-pwMS, n = 54). Anti-spike immunoglobulin (Ig)-G detection was performed by an enzyme immunoassay; molecular mediators (GrB, IFN-gamma and TNF-alpha) were quantified using the ELLA platform, and immunophenotype was assessed by flow cytometry. ANCOVA, Student's t-test and Pearson correlation analyses were applied. Only one o-pwMS showed a mild COVID-19 infection despite most o-pwMS lacking seroconversion and showing lower anti-spike IgG titers than c-pwMS and f-pwMS. No significant difference in cytokine production and lymphocyte count was observed in c-pwMS and f-pwMS. In contrast, in o-pwMS, a significant increase in GrB levels was detected after vaccination. Considering non-seroconverted o-pwMS, a significant increase in GrB serum levels and CD4+ T lymphocyte count was found after vaccination, and a negative correlation was observed between anti-spike IgG production and CD4+ T cells count. Differences in inflammatory mediators' production after BNT162b2 vaccination in o-pwMS, specifically in those lacking anti-spike IgG, suggest a protective cellular immune response

    CSF parvalbumin levels reflect interneuron loss linked with cortical pathology in multiple sclerosis

    Get PDF
    Introduction and methods: In order to verify whether parvalbumin (PVALB), a protein specifically expressed by GABAergic interneurons, could be a MS-specific marker of grey matter neurodegeneration, we performed neuropathology/molecular analysis of PVALB expression in motor cortex of 40 post-mortem progressive MS cases, with/without meningeal inflammation, and 10 control cases, in combination with cerebrospinal fluid (CSF) assessment. Analysis of CSF PVALB and neurofilaments (Nf-L) levels combined with physical/cognitive/3TMRI assessment was performed in 110 na\uefve MS patients and in 32 controls at time of diagnosis. Results: PVALB gene expression was downregulated in MS (fold change = 3.7 \ub1 1.2, P < 0.001 compared to controls) reflecting the significant reduction of PVALB+ cell density in cortical lesions, to a greater extent in MS patients with high meningeal inflammation (51.8, P < 0.001). Likewise, post-mortem CSF-PVALB levels were higher in MS compared to controls (fold change = 196 \ub1 36, P < 0.001) and correlated with decreased PVALB+ cell density (r = -0.64, P < 0.001) and increased MHC-II+ microglia density (r = 0.74, P < 0.01), as well as with early age of onset (r = -0.69, P < 0.05), shorter time to wheelchair (r = -0.49, P < 0.05) and early age of death (r = -0.65, P < 0.01). Increased CSF-PVALB levels were detected in MS patients at diagnosis compared to controls (P = 0.002). Significant correlation was found between CSF-PVALB levels and cortical lesion number on MRI (R = 0.28, P = 0.006) and global cortical thickness (R = -0.46, P < 0.001), better than Nf-L levels. CSF-PVALB levels increased in MS patients with severe cognitive impairment (mean \ub1 SEM:25.2 \ub1 7.5 ng/mL) compared to both cognitively normal (10.9 \ub1 2.4, P = 0.049) and mild cognitive impaired (10.1 \ub1 2.9, P = 0.024) patients. Conclusions: CSF-PVALB levels reflect loss of cortical interneurons in MS patients with more severe disease course and might represent an early, new MS-specific biomarker of cortical neurodegeneration, atrophy, and cognitive decline

    COVID-19 Severity in Multiple Sclerosis: Putting Data Into Context

    Get PDF
    Background and objectives: It is unclear how multiple sclerosis (MS) affects the severity of COVID-19. The aim of this study is to compare COVID-19-related outcomes collected in an Italian cohort of patients with MS with the outcomes expected in the age- and sex-matched Italian population. Methods: Hospitalization, intensive care unit (ICU) admission, and death after COVID-19 diagnosis of 1,362 patients with MS were compared with the age- and sex-matched Italian population in a retrospective observational case-cohort study with population-based control. The observed vs the expected events were compared in the whole MS cohort and in different subgroups (higher risk: Expanded Disability Status Scale [EDSS] score > 3 or at least 1 comorbidity, lower risk: EDSS score ≤ 3 and no comorbidities) by the χ2 test, and the risk excess was quantified by risk ratios (RRs). Results: The risk of severe events was about twice the risk in the age- and sex-matched Italian population: RR = 2.12 for hospitalization (p < 0.001), RR = 2.19 for ICU admission (p < 0.001), and RR = 2.43 for death (p < 0.001). The excess of risk was confined to the higher-risk group (n = 553). In lower-risk patients (n = 809), the rate of events was close to that of the Italian age- and sex-matched population (RR = 1.12 for hospitalization, RR = 1.52 for ICU admission, and RR = 1.19 for death). In the lower-risk group, an increased hospitalization risk was detected in patients on anti-CD20 (RR = 3.03, p = 0.005), whereas a decrease was detected in patients on interferon (0 observed vs 4 expected events, p = 0.04). Discussion: Overall, the MS cohort had a risk of severe events that is twice the risk than the age- and sex-matched Italian population. This excess of risk is mainly explained by the EDSS score and comorbidities, whereas a residual increase of hospitalization risk was observed in patients on anti-CD20 therapies and a decrease in people on interferon

    Disease-Modifying Therapies and Coronavirus Disease 2019 Severity in Multiple Sclerosis

    Get PDF
    Objective: This study was undertaken to assess the impact of immunosuppressive and immunomodulatory therapies on the severity of coronavirus disease 2019 (COVID-19) in people with multiple sclerosis (PwMS). Methods: We retrospectively collected data of PwMS with suspected or confirmed COVID-19. All the patients had complete follow-up to death or recovery. Severe COVID-19 was defined by a 3-level variable: mild disease not requiring hospitalization versus pneumonia or hospitalization versus intensive care unit (ICU) admission or death. We evaluated baseline characteristics and MS therapies associated with severe COVID-19 by multivariate and propensity score (PS)-weighted ordinal logistic models. Sensitivity analyses were run to confirm the results. Results: Of 844 PwMS with suspected (n = 565) or confirmed (n = 279) COVID-19, 13 (1.54%) died; 11 of them were in a progressive MS phase, and 8 were without any therapy. Thirty-eight (4.5%) were admitted to an ICU; 99 (11.7%) had radiologically documented pneumonia; 96 (11.4%) were hospitalized. After adjusting for region, age, sex, progressive MS course, Expanded Disability Status Scale, disease duration, body mass index, comorbidities, and recent methylprednisolone use, therapy with an anti-CD20 agent (ocrelizumab or rituximab) was significantly associated (odds ratio [OR] = 2.37, 95% confidence interval [CI] = 1.18-4.74, p = 0.015) with increased risk of severe COVID-19. Recent use (<1 month) of methylprednisolone was also associated with a worse outcome (OR = 5.24, 95% CI = 2.20-12.53, p = 0.001). Results were confirmed by the PS-weighted analysis and by all the sensitivity analyses. Interpretation: This study showed an acceptable level of safety of therapies with a broad array of mechanisms of action. However, some specific elements of risk emerged. These will need to be considered while the COVID-19 pandemic persists

    SARS-CoV-2 serology after COVID-19 in multiple sclerosis: An international cohort study

    Get PDF
    corecore