28 research outputs found
Identification of biomarkers in patients with rheumatoid arthritis responsive to DMARDs but with progressive bone erosion
IntroductionRheumatoid arthritis (RA) is an inflammatory autoimmune disease that may cause joint destruction and disability. The pharmacological treatment of RA aims at obtaining disease remission by effectively ceasing joint inflammation and arresting progressive bone erosions. Some patients present bone lesions accrual even after controlling joint inflammation with current therapies. Our study aimed to analyze lymphocyte subsets and levels of circulating cytokines in patients with RA with progressive bone erosions.MethodsWe enrolled 20 patients with a diagnosis of RA and 12 healthy donors (HD). Patients with RA were divided into patients with bone erosions (RA-BE+) and without bone erosions (RA-BE-). Lymphocyte subsets in peripheral blood were evaluated by flow cytometry. Circulating cytokines levels were evaluated by protein array.ResultsThe distribution of lymphocyte subsets was not able to separate HD from AR patients and RA-BE+ and RA-BE- in cluster analysis. We observed a significant expansion of CXCR5- PD1+ T peripheral helper cells (Tph cells) and a reduction in both total memory B cells and switched memory B cells in RA patients compared to HD. We observed an expansion in the frequency of total B cells in RA-BE+ patients compared to RA-BE- patients. Unsupervised hierarchical clustering analysis of 39 cytokines resulted in a fairly good separation of HD from RA patients but not of RA-BE+ patients from RA-BE- patients. RA-BE+ patients showed significantly higher levels of IL-11 and IL-17A than RA-BE- patients.ConclusionWe show that patients with progressive erosive disease are characterized by abnormalities in B cells and in cytokines with a proven role in bone reabsorption. Understanding the role played by B cells and the cytokine IL-11 and IL-17A in progressive erosive disease can help identify novel biomarkers of erosive disease and design treatment approaches aimed at halting joint damage in RA
Neutralization of IFN-γ reverts clinical and laboratory features in a mouse model of macrophage activation syndrome.
BACKGROUND: The pathogenesis of macrophage activation syndrome (MAS) is not clearly understood: a large body of evidence supports the involvement of mechanisms similar to those implicated in the setting of primary hemophagocytic lymphohistiocytosis.
OBJECTIVE: We sought to investigate the pathogenic role of IFN-γ and the therapeutic efficacy of IFN-γ neutralization in an animal model of MAS.
METHODS: We used an MAS model established in mice transgenic for human IL-6 (IL-6TG mice) challenged with LPS (MAS mice). Levels of IFN-γ and IFN-γ-inducible chemokines were evaluated by using real-time PCR in the liver and spleen and by means of ELISA in plasma. IFN-γ neutralization was achieved by using the anti-IFN-γ antibody XMG1.2 in vivo.
RESULTS: Mice with MAS showed a significant upregulation of the IFN-γ pathway, as demonstrated by increased mRNA levels of Ifng and higher levels of phospho-signal transducer and activator of transcription 1 in the liver and spleen and increased expression of the IFN-γ-inducible chemokines Cxcl9 and Cxcl10 in the liver and spleen, as well as in plasma. A marked increase in Il12a and Il12b expression was also found in livers and spleens of mice with MAS. In addition, mice with MAS had a significant increase in numbers of liver CD68+ macrophages. Mice with MAS treated with an anti-IFN-γ antibody showed a significant improvement in survival and body weight recovery associated with a significant amelioration of ferritin, fibrinogen, and alanine aminotransferase levels. In mice with MAS, treatment with the anti-IFN-γ antibody significantly decreased circulating levels of CXCL9, CXCL10, and downstream proinflammatory cytokines. The decrease in CXCL9 and CXCL10 levels paralleled the decrease in serum levels of proinflammatory cytokines and ferritin.
CONCLUSION: These results provide evidence for a pathogenic role of IFN-γ in the setting of MAS
A methodology to quantify debris generation after a seismic event
Seismic damage simulation at the regional scale can potentially provide valuable information that can facilitate decision making, enhance planning for disaster mitigation, and reduce human and economic losses. When an earthquake happens, building damage assessment is one of the important issues in earthquake loss estimation. The amount of debris generated and the effects on related critical infrastructures is also an essential information to evaluate. Indeed, as cascading consequence of debris accumulation, the road network can be interrupted. This entails an overall increase in the average number of people who have difficulty evacuating, with high risk that residents cannot evacuate any areas. This study proposes a method to evaluate the debris affected area and the debris amount as a function of the geometric characteristics and the level of damage of the buildings. The first part of this work is focused on the evaluation of the debris area’s extension by numerical simulations. Comparison of the results with images of real seismic damaged structures allows the validation of the results. Besides, experimental tests on a small shaking table are performed to validate the numerical simulations. A mathematic model based on the results is also proposed
Dysregulated miR-155 and miR-125b Are Related to Impaired B-cell Responses in Down Syndrome
Children with Down Syndrome (DS) suffer from immune deficiency with a severe reduction in switched memory B cells (MBCs) and poor response to vaccination. Chromosome 21 (HSA21) encodes two microRNAs (miRs), miR-125b, and miR-155, that regulate B-cell responses. We studied B- and T- cell subpopulations in tonsils of DS and age-matched healthy donors (HD) and found that the germinal center (GC) reaction was impaired in DS. GC size, numbers of GC B cells and Follicular Helper T cells (TFH) expressing BCL6 cells were severely reduced. The expression of miR-155 and miR-125b was increased in tonsillar memory B cells and miR-125b was also higher than expected in plasma cells (PCs). Activation-induced cytidine deaminase (AID) protein, a miR-155 target, was significantly reduced in MBCs of DS patients. Increased expression of miR-155 was also observed in vitro. MiR-155 was significantly overexpressed in PBMCs activated with CpG, whereas miR-125b was constitutively higher than normal. The increase of miR-155 and its functional consequences were blocked by antagomiRs in vitro. Our data show that the expression of HSA21-encoded miR-155 and miR-125b is altered in B cells of DS individuals both in vivo and in vitro. Because of HSA21-encoded miRs may play a role also in DS-associated dementia and leukemia, our study suggests that antagomiRs may represent pharmacological tools useful for the treatment of DS
The Interplay between CD27dull and CD27bright B Cells Ensures the Flexibility, Stability, and Resilience of Human B Cell Memory
Summary: Memory B cells (MBCs) epitomize the adaptation of the immune system to the environment. We identify two MBC subsets in peripheral blood, CD27dull and CD27bright MBCs, whose frequency changes with age. Heavy chain variable region (VH) usage, somatic mutation frequency replacement-to-silent ratio, and CDR3 property changes, reflecting consecutive selection of highly antigen-specific, low cross-reactive antibody variants, all demonstrate that CD27dull and CD27bright MBCs represent sequential MBC developmental stages, and stringent antigen-driven pressure selects CD27dull into the CD27bright MBC pool. Dynamics of human MBCs are exploited in pregnancy, when 50% of maternal MBCs are lost and CD27dull MBCs transit to the more differentiated CD27bright stage. In the postpartum period, the maternal MBC pool is replenished by the expansion of persistent CD27dull clones. Thus, the stability and flexibility of human B cell memory is ensured by CD27dull MBCs that expand and differentiate in response to change. : Grimsholm et al. show that CD27dull and CD27bright represent sequential MBC developmental stages. T cell- and germinal center (GC)-independent CD27dull MBCs are the plastic source of strongly selected and GC-dependent CD27bright MBCs. CD27dull MBCs, able to expand and differentiate in response to change, ensure stability and flexibility of human B cell memory. Keywords: memory B cells, pregnancy, immunological memory, CD27, VH repertoire, immunodeficiency, aging, spleen, vaccine, germinal cente
The clinical phenotype of Systemic Sclerosis patients with anti-PM/Scl antibodies: results from the EUSTAR cohort
OBJECTIVE
To evaluate clinical associations of anti-PM/Scl antibodies in patients with Systemic Sclerosis (SSc) in a multicentre international cohort, with particular focus on unresolved issues, including scleroderma renal crisis (SRC), malignancies, and functional outcome of interstitial lung disease (ILD).
METHODS
(1) Analysis of SSc patients from the EUSTAR database: 144 anti-PM/Scl+ without SSc-specific autoantibodies were compared to 7,202 anti-PM/Scl-, and then to 155 anti-Pm/Scl+ with SSc-specific antibodies. (2) Case-control study: additional data were collected for 165 anti-PM/Scl+ SSc (85 from the EUSTAR registry), and compared to 257 anti-PM/Scl- SSc controls, matched for sex, cutaneous subset, disease duration, and age at SSc onset.
RESULTS
Patients with isolated anti-PM/Scl positivity, as compared with anti-Pm/Scl-, had higher frequency of muscle involvement, ILD, calcinosis and cutaneous signs of dermatomyositis, but similar frequency of SRC and malignancies (either synchronous with SSc onset or not). The presence of muscle involvement was associated with a more severe disease phenotype. Although very frequent, ILD had a better functional outcome in cases than in controls.In patients with both anti-PM/Scl and SSc-specific antibodies, a higher frequency of typical SSc features than in those with isolated anti-PM/Scl was observed.
CONCLUSION
The analysis of the largest series of anti-PM/Scl+ SSc patients so far reported helps to delineate a specific clinical subset with muscle involvement, cutaneous dermatomyositis, calcinosis, and ILD characterized by a good functional outcome. SRC and malignancies do not seem to be part of this syndrome
An Adaptive Generalized Leaky Integrate-and-Fire Model for Hippocampal CA1 Pyramidal Neurons and Interneurons
Full-scale morphologically and biophysically realistic model networks, aiming at modeling multiple brain areas, provide an invaluable tool to make significant scientific advances from in-silico experiments on cognitive functions to digital twin implementations. Due to the current technical limitations of supercomputer systems in terms of computational power and memory requirements, these networks must be implemented using (at least) simplified neurons. A class of models which achieve a reasonable compromise between accuracy and computational efficiency is given by generalized leaky integrate-and fire models complemented by suitable initial and update conditions. However, we found that these models cannot reproduce the complex and highly variable firing dynamics exhibited by neurons in several brain regions, such as the hippocampus. In this work, we propose an adaptive generalized leaky integrate-and-fire model for hippocampal CA1 neurons and interneurons, in which the nonlinear nature of the firing dynamics is successfully reproduced by linear ordinary differential equations equipped with nonlinear and more realistic initial and update conditions after each spike event, which strictly depends on the external stimulation current. A mathematical analysis of the equilibria stability as well as the monotonicity properties of the analytical solution for the membrane potential allowed (i) to determine general constraints on model parameters, reducing the computational cost of an optimization procedure based on spike times in response to a set of constant currents injections; (ii) to identify additional constraints to quantitatively reproduce and predict the experimental traces from 85 neurons and interneurons in response to any stimulation protocol using constant and piecewise constant current injections. Finally, this approach allows to easily implement a procedure to create infinite copies of neurons with mathematically controlled firing properties, statistically indistinguishable from experiments, to better reproduce the full range and variability of the firing scenarios observed in a real network
One year in review 2018: idiopathic inflammatory myopathies
Idiopathic inflammatory myopathies (IIMs) are a group of chronic autoimmune systemic diseases affecting the skeletal muscle and other organs. IIMs are also a complex group of diseases, in some cases, difficult to manage. Literature on IIMs has been growing fairly rapidly and keeping up-to-date on such a topic is of utmost importance for any rheumatologist who looks after IIM patients. Thus, the aim of this review is to summarise the most relevant literature contributions published over the last year on the pathogenesis, serology, diagnosis and treatment of IIMs
Cleavage of the APE1 N-terminal domain in acute myeloid leukemia cells is associated with proteasomal activity
Apurinic/apyrimidinic endonuclease 1 (APE1), the main mammalian AP-endonuclease for the resolution of DNA damages through the base excision repair (BER) pathway, acts as a multifunctional protein in different key cellular processes. The signals to ensure temporo-spatial regulation of APE1 towards a specific function are still a matter of debate. Several studies have suggested that post-translational modifications (PTMs) act as dynamic molecular mechanisms for controlling APE1 functionality. Interestingly, the N-terminal region of APE1 is a disordered portion functioning as an interface for protein binding, as an acceptor site for PTMs and as a target of proteolytic cleavage. We previously demonstrated a cytoplasmic accumulation of truncated APE1 in acute myeloid leukemia (AML) cells in association with a mutated form of nucleophosmin having aberrant cytoplasmic localization (NPM1c+). Here, we mapped the proteolytic sites of APE1 in AML cells at Lys31 and Lys32 and showed that substitution of Lys27, 31, 32 and 35 with alanine impairs proteolysis. We found that the loss of the APE1 N-terminal domain in AML cells is dependent on the proteasome, but not on granzyme A/K as described previously. The present work identified the proteasome as a contributing machinery involved in APE1 cleavage in AML cells, suggesting that acetylation can modulate this process