280 research outputs found

    Predictive factors for hepatocellular carcinoma recurrence after curative treatments

    Get PDF
    Hepatocellular carcinoma (HCC) is the fifth most common neoplasm worldwide. Recurrence of HCC after resection or loco-regional therapies represents an important clinical issue as it affects up to 70% of patients. This can be divided into early or late, if it occurs within or after 24 months after treatment, respectively. While the predictive factors for early recurrence are mainly related to tumour biology (local invasion and intrahepatic metastases), late recurrences are mainly related to de novo tumour formation. Thus, it is important to recognize these factors prior to any treatment in each patient, in order to optimize the treatment strategy and follow-up after treatment. The aim of this review is to summarize the current evidence available regarding predictive factors for the recurrence of HCC, according to the different therapeutic strategies available. In particular, we will discuss the role of new ultrasound-based techniques and biological features, such as tumor-related and circulating biomarkers, in predicting HCC recurrence. Recent advances in imaging-related parameters in computed-tomography scans and magnetic resonance imaging will also be discussed

    MUSE AO spectroscopy confirms five dual AGNs and two strongly lensed QSOs at sub-arcsec separation

    Full text link
    The novel Gaia Multi Peak (GMP) technique has proven to be able to successfully select dual and lensed AGN candidates at sub-arcsec separations. Both populations are important because dual AGNs represent one of the central, still largely untested, predictions of lamdaCDM cosmology, and compact lensed quasars allow to probe the central regions of the lensing galaxies. In this work, we present high spatial resolution spectroscopy of twelve GMP-selected systems. We use the the adaptive-optics assisted integral-field spectrograph MUSE at VLT to resolve each system and study the nature of each component. All the targets reveal the presence of two components confirming the GMP selection. We classify five targets as dual AGNs, two as lensed systems, and five as a chance alignment of a star and and AGN. Having separations between 0.30" and 0.86", these dual and lensed systems are, to date, among the most compact ever discovered at z >0.3. This is the largest sample of distant dual AGNs with sub-arcsec separations ever presented in a single paper.Comment: 11 pages, 9 figure

    An Introduction to Gas Accretion onto Galaxies

    Full text link
    Evidence for gas accretion onto galaxies can be found throughout the universe. In this chapter, I summarize the direct and indirect signatures of this process and discuss the primary sources. The evidence for gas accretion includes the star formation rates and metallicities of galaxies, the evolution of the cold gas content of the universe with time, numerous indirect indicators for individual galaxies, and a few direct detections of inflow. The primary sources of gas accretion are the intergalactic medium, satellite gas and feedback material. There is support for each of these sources from observations and simulations, but the methods with which the fuel ultimately settles in to form stars remain murky.Comment: 14 pages, 5 figures, Invited review to appear in Gas Accretion onto Galaxies, Astrophysics and Space Science Library, eds. A. J. Fox & R. Dav\'e, to be published by Springe

    Gas Accretion via Lyman Limit Systems

    Full text link
    In cosmological simulations, a large fraction of the partial Lyman limit systems (pLLSs; 16<log N(HI)<17.2) and LLSs (17.2log N(HI)<19) probes large-scale flows in and out of galaxies through their circumgalactic medium (CGM). The overall low metallicity of the cold gaseous streams feeding galaxies seen in these simulations is the key to differentiating them from metal rich gas that is either outflowing or being recycled. In recent years, several groups have empirically determined an entirely new wealth of information on the pLLSs and LLSs over a wide range of redshifts. A major focus of the recent research has been to empirically determine the metallicity distribution of the gas probed by pLLSs and LLSs in sizable and representative samples at both low (z2) redshifts. Here I discuss unambiguous evidence for metal-poor gas at all z probed by the pLLSs and LLSs. At z<1, all the pLLSs and LLSs so far studied are located in the CGM of galaxies with projected distances <100-200 kpc. Regardless of the exact origin of the low-metallicity pLLSs/LLSs, there is a significant mass of cool, dense, low-metallicity gas in the CGM that may be available as fuel for continuing star formation in galaxies over cosmic time. As such, the metal-poor pLLSs and LLSs are currently among the best observational evidence of cold, metal-poor gas accretion onto galaxies.Comment: Invited review to appear in Gas Accretion onto Galaxies, Astrophysics and Space Science Library, eds. A. J. Fox & R. Dav\'e, to be published by Springe

    Gas Accretion and Star Formation Rates

    Full text link
    Cosmological numerical simulations of galaxy evolution show that accretion of metal-poor gas from the cosmic web drives the star formation in galaxy disks. Unfortunately, the observational support for this theoretical prediction is still indirect, and modeling and analysis are required to identify hints as actual signs of star-formation feeding from metal-poor gas accretion. Thus, a meticulous interpretation of the observations is crucial, and this observational review begins with a simple theoretical description of the physical process and the key ingredients it involves, including the properties of the accreted gas and of the star-formation that it induces. A number of observations pointing out the connection between metal-poor gas accretion and star-formation are analyzed, specifically, the short gas consumption time-scale compared to the age of the stellar populations, the fundamental metallicity relationship, the relationship between disk morphology and gas metallicity, the existence of metallicity drops in starbursts of star-forming galaxies, the so-called G dwarf problem, the existence of a minimum metallicity for the star-forming gas in the local universe, the origin of the alpha-enhanced gas forming stars in the local universe, the metallicity of the quiescent BCDs, and the direct measurements of gas accretion onto galaxies. A final section discusses intrinsic difficulties to obtain direct observational evidence, and points out alternative observational pathways to further consolidate the current ideas.Comment: Invited review to appear in Gas Accretion onto Galaxies, Astrophysics and Space Science Library, eds. A. J. Fox & R. Dav\'e, to be published by Springe

    The Circumgalactic Medium in Massive Halos

    Full text link
    This chapter presents a review of the current state of knowledge on the cool (T ~ 1e4 K) halo gas content around massive galaxies at z ~ 0.2-2. Over the last decade, significant progress has been made in characterizing the cool circumgalactic gas in massive halos of Mh ~ 1e12-1e14 Msun at intermediate redshifts using absorption spectroscopy. Systematic studies of halo gas around massive galaxies beyond the nearby universe are made possible by large spectroscopic samples of galaxies and quasars in public archives. In addition to accurate and precise constraints for the incidence of cool gas in massive halos, detailed characterizations of gas kinematics and chemical compositions around massive quiescent galaxies at z ~ 0.5 have also been obtained. Combining all available measurements shows that infalling clouds from external sources are likely the primary source of cool gas detected at d >~ 100 kpc from massive quiescent galaxies. The origin of the gas closer in is currently less certain, but SNe Ia driven winds appear to contribute significantly to cool gas found at d < 100 kpc. In contrast, cool gas observed at d <~ 200 kpc from luminous quasars appears to be intimately connected to quasar activities on parsec scales. The observed strong correlation between cool gas covering fraction in quasar host halos and quasar bolometric luminosity remains a puzzle. Combining absorption-line studies with spatially-resolved emission measurements of both gas and galaxies is the necessary next step to address remaining questions.Comment: 29 pages, 7 figures, invited review to appear in "Gas Accretion onto Galaxies", Astrophysics and Space Science Library, eds. A. Fox & R. Dave, to be published by Springe

    Extracorporeal Membrane Oxygenation for Graft Dysfunction Early After Heart Transplantation: A Systematic Review and Meta-analysis

    Get PDF
    Introduction: Venoarterial extracorporeal membrane oxygenation (VA-ECMO) is a prevailing option for the management of severe early graft dysfunction. This systematic review and individual patient data (IPD) meta-analysis aims to evaluate (1) mortality, (2) rates of major complications, (3) prognostic factors, and (4) the effect of different VA-ECMO strategies on outcomes in adult heart transplant (HT) recipients supported with VA-ECMO. Methods and Results: We conducted a systematic search and included studies of adults (≥18 years) who received VA-ECMO during their index hospitalization after HT and reported on mortality at any timepoint. We pooled data using random effects models. To identify prognostic factors, we analysed IPD using mixed effects logistic regression. We assessed the certainty in the evidence using the GRADE framework. We included 49 observational studies of 1477 patients who received VA-ECMO after HT, of which 15 studies provided IPD for 448 patients. There were no differences in mortality estimates between IPD and non-IPD studies. The short-term (30-day/in-hospital) mortality estimate was 33% (moderate certainty, 95% confidence interval [CI] 28%–39%) and 1-year mortality estimate 50% (moderate certainty, 95% CI 43%–57%). Recipient age (odds ratio 1.02, 95% CI 1.01–1.04) and prior sternotomy (OR 1.57, 95% CI 0.99–2.49) are associated with increased short-term mortality. There is low certainty evidence that early intraoperative cannulation and peripheral cannulation reduce the risk of short-term death. Conclusions: One-third of patients who receive VA-ECMO for early graft dysfunction do not survive 30 days or to hospital discharge, and one-half do not survive to 1 year after HT. Improving outcomes will require ongoing research focused on optimizing VA-ECMO strategies and care in the first year after HT

    Whole-genome sequencing analysis of semi-supercentenarians

    Get PDF
    Extreme longevity is the paradigm of healthy aging as individuals who reached the extreme decades of human life avoided or largely postponed all major age-related diseases. In this study, we sequenced at high coverage (90X) the whole genome of 81 semi-supercentenarians and supercentenarians [105+/110+] (mean age: 106.6 ± 1.6) and of 36 healthy unrelated geographically matched controls (mean age 68.0 ± 5.9) recruited in Italy. The results showed that 105+/110+ are characterized by a peculiar genetic background associated with efficient DNA repair mechanisms, as evidenced by both germline data (common and rare variants) and somatic mutations patterns (lower mutation load if compared to younger healthy controls). Results were replicated in a second independent cohort of 333 Italian centenarians and 358 geographically matched controls. The genetics of 105+/110+ identified DNA repair and clonal haematopoiesis as crucial players for healthy aging and for the protection from cardiovascular events

    Generic Constructions of Robustly Reusable Fuzzy Extractor

    Get PDF
    Robustly reusable Fuzzy Extractor (rrFE) considers reusability and robustness simultaneously. We present two approaches to the generic construction of rrFE. Both of approaches make use of a secure sketch and universal hash functions. The first approach also employs a special pseudo-random function (PRF), namely unique-input key-shift (ui-ks) secure PRF, and the second uses a key-shift secure auxiliary-input authenticated encryption (AIAE). The ui-ks security of PRF (resp. key-shift security of AIAE), together with the homomorphic properties of secure sketch and universal hash function, guarantees the reusability and robustness of rrFE. Meanwhile, we show two instantiations of the two approaches respectively. The first instantiation results in the first rrFE from the LWE assumption, while the second instantiation results in the first rrFE from the DDH assumption over non-pairing groups

    SaS-BCI: A New Strategy to Predict Image Memorability and use Mental Imagery as a Brain-Based Biometric Authentication

    Get PDF
    Security authentication is one of the most important levels of information security. Nowadays, human biometric techniques are the most secure methods for authentication purposes that cover the problems of older types of authentication like passwords and pins. There are many advantages of recent biometrics in terms of security; however, they still have some disadvantages. Progresses in technology made some specific devices, which make it possible to copy and make a fake human biometric because they are all visible and touchable. According to this matter, there is a need for a new biometric to cover the issues of other types. Brainwave is human data, which uses them as a new type of security authentication that has engaged many researchers. There are some research and experiments, which are investigating and testing EEG signals to find the uniqueness of human brainwave. Some researchers achieved high accuracy rates in this area by applying different signal acquisition techniques, feature extraction and classifications using Brain–Computer Interface (BCI). One of the important parts of any BCI processes is the way that brainwaves could be acquired and recorded. A new Signal Acquisition Strategy is presented in this paper for the process of authorization and authentication of brain signals specifically. This is to predict image memorability from the user’s brain to use mental imagery as a visualization pattern for security authentication. Therefore, users can authenticate themselves with visualizing a specific picture in their minds. In conclusion, we can see that brainwaves can be different according to the mental tasks, which it would make it harder using them for authentication process. There are many signal acquisition strategies and signal processing for brain-based authentication that by using the right methods, a higher level of accuracy rate could be achieved which is suitable for using brain signal as another biometric security authentication
    corecore