123 research outputs found

    OptCDR: a general computational method for the design of antibody complementarity determining regions for targeted epitope binding

    Get PDF
    Antibodies are an important class of proteins with many biomedical and biotechnical applications. Although there are a plethora of experimental techniques geared toward their efficient production, there is a paucity of computational methods for their de novo design. OptCDR is a general computational method to design the binding portions of antibodies to have high specificity and affinity against any targeted epitope of an antigen. First, combinations of canonical structures for the antibody complementarity determining regions (CDRs) that are most likely to be able to favorably bind the antigen are selected. This is followed by the simultaneous refinement of the CDR structures' backbones and optimal amino acid selection for each position. OptCDR is applied to three computational test cases: a peptide from the capsid of hepatitis C, the hapten fluorescein and the protein vascular endothelial growth factor. The results demonstrate that OptCDR can efficiently generate diverse antibody libraries of a pre-specified size with promising antigen affinity potential as exemplified by computationally derived binding metrics. Keywords: antibody design/computational protein design/ fluorescein/hepatitis C/vascular endothelial growth facto

    Elucidation of Directionality for Co-Expressed Genes: Predicting Intra-Operon Termination Sites

    Full text link
    We present a novel framework for inferring regulatory and sequence-level information from gene co-expression networks. The key idea of our methodology is the systematic integration of network inference and network topological analysis approaches for uncovering biological insights. We determine the gene co-expression network of Bacillus subtilis using Affymetrix GeneChip time series data and show how the inferred network topology can be linked to sequence-level information hard-wired in the organism's genome. We propose a systematic way for determining the correlation threshold at which two genes are assessed to be co-expressed by using the clustering coefficient and we expand the scope of the gene co-expression network by proposing the slope ratio metric as a means for incorporating directionality on the edges. We show through specific examples for B. subtilis that by incorporating expression level information in addition to the temporal expression patterns, we can uncover sequence-level biological insights. In particular, we are able to identify a number of cases where (i) the co-expressed genes are part of a single transcriptional unit or operon and (ii) the inferred directionality arises due to the presence of intra-operon transcription termination sites.Comment: 7 pages, 8 figures, accepted in Bioinformatic

    Global Optimization by Basin-Hopping and the Lowest Energy Structures of Lennard-Jones Clusters Containing up to 110 Atoms

    Full text link
    We describe a global optimization technique using `basin-hopping' in which the potential energy surface is transformed into a collection of interpenetrating staircases. This method has been designed to exploit the features which recent work suggests must be present in an energy landscape for efficient relaxation to the global minimum. The transformation associates any point in configuration space with the local minimum obtained by a geometry optimization started from that point, effectively removing transition state regions from the problem. However, unlike other methods based upon hypersurface deformation, this transformation does not change the global minimum. The lowest known structures are located for all Lennard-Jones clusters up to 110 atoms, including a number that have never been found before in unbiased searches.Comment: 8 pages, 3 figures, revte

    Unbiased Global Optimization of Lennard-Jones Clusters for N <= 201 by Conformational Space Annealing Method

    Full text link
    We apply the conformational space annealing (CSA) method to the Lennard-Jones clusters and find all known lowest energy configurations up to 201 atoms, without using extra information of the problem such as the structures of the known global energy minima. In addition, the robustness of the algorithm with respect to the randomness of initial conditions of the problem is demonstrated by ten successful independent runs up to 183 atoms. Our results indicate that the CSA method is a general and yet efficient global optimization algorithm applicable to many systems.Comment: revtex, 4 pages, 2 figures. Physical Review Letters, in pres

    Reconstruction of Genome-Scale Active Metabolic Networks for 69 Human Cell Types and 16 Cancer Types Using INIT

    Get PDF
    Development of high throughput analytical methods has given physicians the potential access to extensive and patient-specific data sets, such as gene sequences, gene expression profiles or metabolite footprints. This opens for a new approach in health care, which is both personalized and based on system-level analysis. Genome-scale metabolic networks provide a mechanistic description of the relationships between different genes, which is valuable for the analysis and interpretation of large experimental data-sets. Here we describe the generation of genome-scale active metabolic networks for 69 different cell types and 16 cancer types using the INIT (Integrative Network Inference for Tissues) algorithm. The INIT algorithm uses cell type specific information about protein abundances contained in the Human Proteome Atlas as the main source of evidence. The generated models constitute the first step towards establishing a Human Metabolic Atlas, which will be a comprehensive description (accessible online) of the metabolism of different human cell types, and will allow for tissue-level and organism-level simulations in order to achieve a better understanding of complex diseases. A comparative analysis between the active metabolic networks of cancer types and healthy cell types allowed for identification of cancer-specific metabolic features that constitute generic potential drug targets for cancer treatment

    An Automated Phenotype-Driven Approach (GeneForce) for Refining Metabolic and Regulatory Models

    Get PDF
    Integrated constraint-based metabolic and regulatory models can accurately predict cellular growth phenotypes arising from genetic and environmental perturbations. Challenges in constructing such models involve the limited availability of information about transcription factorβ€”gene target interactions and computational methods to quickly refine models based on additional datasets. In this study, we developed an algorithm, GeneForce, to identify incorrect regulatory rules and gene-protein-reaction associations in integrated metabolic and regulatory models. We applied the algorithm to refine integrated models of Escherichia coli and Salmonella typhimurium, and experimentally validated some of the algorithm's suggested refinements. The adjusted E. coli model showed improved accuracy (∼80.0%) for predicting growth phenotypes for 50,557 cases (knockout mutants tested for growth in different environmental conditions). In addition to identifying needed model corrections, the algorithm was used to identify native E. coli genes that, if over-expressed, would allow E. coli to grow in new environments. We envision that this approach will enable the rapid development and assessment of genome-scale metabolic and regulatory network models for less characterized organisms, as such models can be constructed from genome annotations and cis-regulatory network predictions

    A Genome-Scale Metabolic Reconstruction of Mycoplasma genitalium, iPS189

    Get PDF
    With a genome size of ∼580 kb and approximately 480 protein coding regions, Mycoplasma genitalium is one of the smallest known self-replicating organisms and, additionally, has extremely fastidious nutrient requirements. The reduced genomic content of M. genitalium has led researchers to suggest that the molecular assembly contained in this organism may be a close approximation to the minimal set of genes required for bacterial growth. Here, we introduce a systematic approach for the construction and curation of a genome-scale in silico metabolic model for M. genitalium. Key challenges included estimation of biomass composition, handling of enzymes with broad specificities, and the lack of a defined medium. Computational tools were subsequently employed to identify and resolve connectivity gaps in the model as well as growth prediction inconsistencies with gene essentiality experimental data. The curated model, M. genitalium iPS189 (262 reactions, 274 metabolites), is 87% accurate in recapitulating in vivo gene essentiality results for M. genitalium. Approaches and tools described herein provide a roadmap for the automated construction of in silico metabolic models of other organisms

    Zea mays iRS1563: A Comprehensive Genome-Scale Metabolic Reconstruction of Maize Metabolism

    Get PDF
    The scope and breadth of genome-scale metabolic reconstructions have continued to expand over the last decade. Herein, we introduce a genome-scale model for a plant with direct applications to food and bioenergy production (i.e., maize). Maize annotation is still underway, which introduces significant challenges in the association of metabolic functions to genes. The developed model is designed to meet rigorous standards on gene-protein-reaction (GPR) associations, elementally and charged balanced reactions and a biomass reaction abstracting the relative contribution of all biomass constituents. The metabolic network contains 1,563 genes and 1,825 metabolites involved in 1,985 reactions from primary and secondary maize metabolism. For approximately 42% of the reactions direct literature evidence for the participation of the reaction in maize was found. As many as 445 reactions and 369 metabolites are unique to the maize model compared to the AraGEM model for A. thaliana. 674 metabolites and 893 reactions are present in Zea mays iRS1563 that are not accounted for in maize C4GEM. All reactions are elementally and charged balanced and localized into six different compartments (i.e., cytoplasm, mitochondrion, plastid, peroxisome, vacuole and extracellular). GPR associations are also established based on the functional annotation information and homology prediction accounting for monofunctional, multifunctional and multimeric proteins, isozymes and protein complexes. We describe results from performing flux balance analysis under different physiological conditions, (i.e., photosynthesis, photorespiration and respiration) of a C4 plant and also explore model predictions against experimental observations for two naturally occurring mutants (i.e., bm1 and bm3). The developed model corresponds to the largest and more complete to-date effort at cataloguing metabolism for a plant species

    OptForce: An Optimization Procedure for Identifying All Genetic Manipulations Leading to Targeted Overproductions

    Get PDF
    Computational procedures for predicting metabolic interventions leading to the overproduction of biochemicals in microbial strains are widely in use. However, these methods rely on surrogate biological objectives (e.g., maximize growth rate or minimize metabolic adjustments) and do not make use of flux measurements often available for the wild-type strain. In this work, we introduce the OptForce procedure that identifies all possible engineering interventions by classifying reactions in the metabolic model depending upon whether their flux values must increase, decrease or become equal to zero to meet a pre-specified overproduction target. We hierarchically apply this classification rule for pairs, triples, quadruples, etc. of reactions. This leads to the identification of a sufficient and non-redundant set of fluxes that must change (i.e., MUST set) to meet a pre-specified overproduction target. Starting with this set we subsequently extract a minimal set of fluxes that must actively be forced through genetic manipulations (i.e., FORCE set) to ensure that all fluxes in the network are consistent with the overproduction objective. We demonstrate our OptForce framework for succinate production in Escherichia coli using the most recent in silico E. coli model, iAF1260. The method not only recapitulates existing engineering strategies but also reveals non-intuitive ones that boost succinate production by performing coordinated changes on pathways distant from the last steps of succinate synthesis
    • …
    corecore