2,031 research outputs found
Nonmicrosurgical reconstruction of the auricle after traumatic amputation due to human bite
BACKGROUND: Traumatic auricular amputation due to human bite is not a common event. Nonetheless, it constitutes a difficult challenge for the reconstructive surgeon. Microsurgery can be performed in some cases, but most microsurgical techniques are complex and their use can only be advocated in specialized centers. Replantation of a severed ear without microsurgery can be a safe alternative as long as a proper technique is selected. METHODS: We present two cases, one of a partial and one of a total traumatic auricular amputation, both caused by human bites, that were successfully managed in our Department. The technique of ear reattachment as a composite graft, with partial burial of the amputated part in the retroauricular region, as first described by Baudet, was followed in both cases. RESULTS AND DISCUSSION: The prementioned technique is described in detail, along with the postoperative management and outcome of the patients. In addition, a brief review of the international literature regarding ear replantation is performed. CONCLUSION: The Baudet technique has been used successfully in two cases of traumatic ear amputation due to human bites. It is a simple technique, without the need for microsurgery, and produces excellent aesthetic results, while preserving all neighboring tissues in case of failure with subsequent need for another operation
Characterization of grain boundaries in multicrystalline silicon with high lateral resolution using conductive atomic force microscopy
In this work, the electrical characteristics of grain boundaries (GBs) in multicrystalline silicon with and without iron contamination are analyzed by fixed voltage current maps and local I/V curves using conductive AFM (cAFM). I/V characteristics reveal the formation of a Schottky contact between the AFM tip and the sample surface. The impact of both, the polarity of the applied voltage and the illumination by the AFM laser on the behavior of GBs was analyzed systematically. Depending on the polarity of the applied voltage and the iron content of the sample, grain boundaries alter significantly the recorded current flow compared to the surrounding material. The results also show a clear influence of the AFM laser light on the electrical behavior of the grain boundaries. Conductive AFM measurements are furthermore compared to data obtained by electron beam induced current (EBIC), indicating that cAFM provides complimentary information
Localisation of iron and zinc in grain of biofortified wheat
The dietary contributions of iron (Fe) and zinc (Zn) from cereals are determined by concentrations, locations and chemical forms. A genetically biofortified wheat line showed higher concentrations of Zn and Fe than three control lines when grown over two years. The mineral distributions determined using imaging (histochemical staining and LA-ICP-MS), sequential pearling and hand dissection showed no consistent differences between the two lines. Fe was most abundant in the aleurone layer and the scutellum and Zn in the scutellar epithelium, the endosperm transfer cells and embryonic axis. Pearling fractions showed positive correlations between the concentration of P and those of Zn and Fe in all fractions except the outermost layer. This is consistent with Fe and Zn being concentrated in phytates. Developing grains showed decreasing gradients in concentration from the proximal to the distal ends. The concentrations of Fe and Zn were therefore higher in the biofortified line than the control lines but their locations did not differ
Registry of Aortic Diseases to Model Adverse Events and Progression (ROADMAP) in Uncomplicated Type B Aortic Dissection: Study Design and Rationale
PURPOSE
To describe the design and methodological approach of a multicenter, retrospective study to externally validate a clinical and imaging-based model for predicting the risk of late adverse events in patients with initially uncomplicated type B aortic dissection (uTBAD).
MATERIALS AND METHODS
The Registry of Aortic Diseases to Model Adverse Events and Progression (ROADMAP) is a collaboration between 10 academic aortic centers in North America and Europe. Two centers have previously developed and internally validated a recently developed risk prediction model. Clinical and imaging data from eight ROADMAP centers will be used for external validation. Patients with uTBAD who survived the initial hospitalization between January 1, 2001, and December 31, 2013, with follow-up until 2020, will be retrospectively identified. Clinical and imaging data from the index hospitalization and all follow-up encounters will be collected at each center and transferred to the coordinating center for analysis. Baseline and follow-up CT scans will be evaluated by cardiovascular imaging experts using a standardized technique.
RESULTS
The primary end point is the occurrence of late adverse events, defined as aneurysm formation (âĽ6 cm), rapid expansion of the aorta (âĽ1 cm/y), fatal or nonfatal aortic rupture, new refractory pain, uncontrollable hypertension, and organ or limb malperfusion. The previously derived multivariable model will be externally validated by using Cox proportional hazards regression modeling.
CONCLUSION
This study will show whether a recent clinical and imaging-based risk prediction model for patients with uTBAD can be generalized to a larger population, which is an important step toward individualized risk stratification and therapy.Keywords: CT Angiography, Vascular, Aorta, Dissection, Outcomes Analysis, Aortic Dissection, MRI, TEVARŠ RSNA, 2022See also the commentary by Rajiah in this issue
Inter-observer Variability of Expert-derived Morphologic Risk Predictors in Aortic Dissection
OBJECTIVES: Establishing the reproducibility of expert-derived measurements on CTA exams of aortic dissection is clinically important and paramount for ground-truth determination for machine learning.
METHODS: Four independent observers retrospectively evaluated CTA exams of 72 patients with uncomplicated Stanford type B aortic dissection and assessed the reproducibility of a recently proposed combination of four morphologic risk predictors (maximum aortic diameter, false lumen circumferential angle, false lumen outflow, and intercostal arteries). For the first inter-observer variability assessment, 47 CTA scans from one aortic center were evaluated by expert-observer 1 in an unconstrained clinical assessment without a standardized workflow and compared to a composite of three expert-observers (observers 2-4) using a standardized workflow. A second inter-observer variability assessment on 30 out of the 47 CTA scans compared observers 3 and 4 with a constrained, standardized workflow. A third inter-observer variability assessment was done after specialized training and tested between observers 3 and 4 in an external population of 25 CTA scans. Inter-observer agreement was assessed with intraclass correlation coefficients (ICCs) and Bland-Altman plots.
RESULTS: Pre-training ICCs of the four morphologic features ranged from 0.04 (-0.05 to 0.13) to 0.68 (0.49-0.81) between observer 1 and observers 2-4 and from 0.50 (0.32-0.69) to 0.89 (0.78-0.95) between observers 3 and 4. ICCs improved after training ranging from 0.69 (0.52-0.87) to 0.97 (0.94-0.99), and Bland-Altman analysis showed decreased bias and limits of agreement.
CONCLUSIONS: Manual morphologic feature measurements on CTA images can be optimized resulting in improved inter-observer reliability. This is essential for robust ground-truth determination for machine learning models.
KEY POINTS: ⢠Clinical fashion manual measurements of aortic CTA imaging features showed poor inter-observer reproducibility. ⢠A standardized workflow with standardized training resulted in substantial improvements with excellent inter-observer reproducibility. ⢠Robust ground truth labels obtained manually with excellent inter-observer reproducibility are key to develop reliable machine learning models
Impact of an SLC30A8 loss-of-function variant on the pancreatic distribution of zinc and manganese: laser ablation-ICP-MS and positron emission tomography studies in mice
IntroductionCommon variants in the SLC30A8 gene, encoding the secretory granule zinc transporter ZnT8 (expressed largely in pancreatic islet alpha and beta cells), are associated with altered risk of type 2 diabetes. Unexpectedly, rare loss-of-function (LoF) variants in the gene, described in heterozygous individuals only, are protective against the disease, even though knockout of the homologous SLC30A8 gene in mice leads to unchanged or impaired glucose tolerance. Here, we aimed to determine how one or two copies of the mutant R138X allele in the mouse SLC30A8 gene impacts the homeostasis of zinc at a whole-body (using non-invasive 62Zn PET imaging to assess the acute dynamics of zinc handling) and tissue/cell level [using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) to map the long-term distribution of zinc and manganese in the pancreas].MethodsFollowing intravenous administration of [62Zn]Zn-citrate (~7 MBq, 150 Îźl) in wild-type (WT), heterozygous (R138X+/â), and homozygous (R138X+/+) mutant mice (14â15 weeks old, n = 4 per genotype), zinc dynamics were measured over 60 min using PET. Histological, islet hormone immunohistochemistry, and elemental analysis with LA-ICP-MS (Zn, Mn, P) were performed on sequential pancreas sections. Bulk Zn and Mn concentration in the pancreas was determined by solution ICP-MS.ResultsOur findings reveal that whereas uptake into organs, assessed using PET imaging of 62Zn, is largely unaffected by the R138X variant, mice homozygous of the mutant allele show a substantial lowering (to 40% of WT) of total islet zinc, as anticipated. In contrast, mice heterozygous for this allele, thus mimicking human carriers of LoF alleles, show markedly increased endocrine and exocrine zinc content (1.6-fold increase for both compared to WT), as measured by LA-ICP-MS. Both endocrine and exocrine manganese contents were also sharply increased in R138X+/â mice, with smaller increases observed in R138X+/+ mice.DiscussionThese data challenge the view that zinc depletion from the beta cell is the likely underlying driver for protection from type 2 diabetes development in carriers of LoF alleles. Instead, they suggest that heterozygous LoF may paradoxically increase pancreatic β-cell zinc and manganese content and impact the levels of these metals in the exocrine pancreas to improve insulin secretion
- âŚ