1,746 research outputs found

    Nonmicrosurgical reconstruction of the auricle after traumatic amputation due to human bite

    Get PDF
    BACKGROUND: Traumatic auricular amputation due to human bite is not a common event. Nonetheless, it constitutes a difficult challenge for the reconstructive surgeon. Microsurgery can be performed in some cases, but most microsurgical techniques are complex and their use can only be advocated in specialized centers. Replantation of a severed ear without microsurgery can be a safe alternative as long as a proper technique is selected. METHODS: We present two cases, one of a partial and one of a total traumatic auricular amputation, both caused by human bites, that were successfully managed in our Department. The technique of ear reattachment as a composite graft, with partial burial of the amputated part in the retroauricular region, as first described by Baudet, was followed in both cases. RESULTS AND DISCUSSION: The prementioned technique is described in detail, along with the postoperative management and outcome of the patients. In addition, a brief review of the international literature regarding ear replantation is performed. CONCLUSION: The Baudet technique has been used successfully in two cases of traumatic ear amputation due to human bites. It is a simple technique, without the need for microsurgery, and produces excellent aesthetic results, while preserving all neighboring tissues in case of failure with subsequent need for another operation

    Localisation of iron and zinc in grain of biofortified wheat

    Get PDF
    The dietary contributions of iron (Fe) and zinc (Zn) from cereals are determined by concentrations, locations and chemical forms. A genetically biofortified wheat line showed higher concentrations of Zn and Fe than three control lines when grown over two years. The mineral distributions determined using imaging (histochemical staining and LA-ICP-MS), sequential pearling and hand dissection showed no consistent differences between the two lines. Fe was most abundant in the aleurone layer and the scutellum and Zn in the scutellar epithelium, the endosperm transfer cells and embryonic axis. Pearling fractions showed positive correlations between the concentration of P and those of Zn and Fe in all fractions except the outermost layer. This is consistent with Fe and Zn being concentrated in phytates. Developing grains showed decreasing gradients in concentration from the proximal to the distal ends. The concentrations of Fe and Zn were therefore higher in the biofortified line than the control lines but their locations did not differ

    Registry of Aortic Diseases to Model Adverse Events and Progression (ROADMAP) in Uncomplicated Type B Aortic Dissection: Study Design and Rationale

    Full text link
    PURPOSE To describe the design and methodological approach of a multicenter, retrospective study to externally validate a clinical and imaging-based model for predicting the risk of late adverse events in patients with initially uncomplicated type B aortic dissection (uTBAD). MATERIALS AND METHODS The Registry of Aortic Diseases to Model Adverse Events and Progression (ROADMAP) is a collaboration between 10 academic aortic centers in North America and Europe. Two centers have previously developed and internally validated a recently developed risk prediction model. Clinical and imaging data from eight ROADMAP centers will be used for external validation. Patients with uTBAD who survived the initial hospitalization between January 1, 2001, and December 31, 2013, with follow-up until 2020, will be retrospectively identified. Clinical and imaging data from the index hospitalization and all follow-up encounters will be collected at each center and transferred to the coordinating center for analysis. Baseline and follow-up CT scans will be evaluated by cardiovascular imaging experts using a standardized technique. RESULTS The primary end point is the occurrence of late adverse events, defined as aneurysm formation (≥6 cm), rapid expansion of the aorta (≥1 cm/y), fatal or nonfatal aortic rupture, new refractory pain, uncontrollable hypertension, and organ or limb malperfusion. The previously derived multivariable model will be externally validated by using Cox proportional hazards regression modeling. CONCLUSION This study will show whether a recent clinical and imaging-based risk prediction model for patients with uTBAD can be generalized to a larger population, which is an important step toward individualized risk stratification and therapy.Keywords: CT Angiography, Vascular, Aorta, Dissection, Outcomes Analysis, Aortic Dissection, MRI, TEVAR© RSNA, 2022See also the commentary by Rajiah in this issue

    Impact of an SLC30A8 loss-of-function variant on the pancreatic distribution of zinc and manganese: laser ablation-ICP-MS and positron emission tomography studies in mice

    Get PDF
    IntroductionCommon variants in the SLC30A8 gene, encoding the secretory granule zinc transporter ZnT8 (expressed largely in pancreatic islet alpha and beta cells), are associated with altered risk of type 2 diabetes. Unexpectedly, rare loss-of-function (LoF) variants in the gene, described in heterozygous individuals only, are protective against the disease, even though knockout of the homologous SLC30A8 gene in mice leads to unchanged or impaired glucose tolerance. Here, we aimed to determine how one or two copies of the mutant R138X allele in the mouse SLC30A8 gene impacts the homeostasis of zinc at a whole-body (using non-invasive 62Zn PET imaging to assess the acute dynamics of zinc handling) and tissue/cell level [using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) to map the long-term distribution of zinc and manganese in the pancreas].MethodsFollowing intravenous administration of [62Zn]Zn-citrate (~7 MBq, 150 μl) in wild-type (WT), heterozygous (R138X+/−), and homozygous (R138X+/+) mutant mice (14–15 weeks old, n = 4 per genotype), zinc dynamics were measured over 60 min using PET. Histological, islet hormone immunohistochemistry, and elemental analysis with LA-ICP-MS (Zn, Mn, P) were performed on sequential pancreas sections. Bulk Zn and Mn concentration in the pancreas was determined by solution ICP-MS.ResultsOur findings reveal that whereas uptake into organs, assessed using PET imaging of 62Zn, is largely unaffected by the R138X variant, mice homozygous of the mutant allele show a substantial lowering (to 40% of WT) of total islet zinc, as anticipated. In contrast, mice heterozygous for this allele, thus mimicking human carriers of LoF alleles, show markedly increased endocrine and exocrine zinc content (1.6-fold increase for both compared to WT), as measured by LA-ICP-MS. Both endocrine and exocrine manganese contents were also sharply increased in R138X+/− mice, with smaller increases observed in R138X+/+ mice.DiscussionThese data challenge the view that zinc depletion from the beta cell is the likely underlying driver for protection from type 2 diabetes development in carriers of LoF alleles. Instead, they suggest that heterozygous LoF may paradoxically increase pancreatic β-cell zinc and manganese content and impact the levels of these metals in the exocrine pancreas to improve insulin secretion

    Deep learning accurately classifies elbow joint effusion in adult and pediatric radiographs

    Get PDF
    Joint effusion due to elbow fractures are common among adults and children. Radiography is the most commonly used imaging procedure to diagnose elbow injuries. The purpose of the study was to investigate the diagnostic accuracy of deep convolutional neural network algorithms in joint effusion classification in pediatric and adult elbow radiographs. This retrospective study consisted of a total of 4423 radiographs in a 3-year period from 2017 to 2020. Data was randomly separated into training (n = 2672), validation (n = 892) and test set (n = 859). Two models using VGG16 as the base architecture were trained with either only lateral projection or with four projections (AP, LAT and Obliques). Three radiologists evaluated joint effusion separately on the test set. Accuracy, precision, recall, specificity, F1 measure, Cohen's kappa, and two-sided 95% confidence intervals were calculated. Mean patient age was 34.4 years (1-98) and 47% were male patients. Trained deep learning framework showed an AUC of 0.951 (95% CI 0.946-0.955) and 0.906 (95% CI 0.89-0.91) for the lateral and four projection elbow joint images in the test set, respectively. Adult and pediatric patient groups separately showed an AUC of 0.966 and 0.924, respectively. Radiologists showed an average accuracy, sensitivity, specificity, precision, F1 score, and AUC of 92.8%, 91.7%, 93.6%, 91.07%, 91.4%, and 92.6%. There were no statistically significant differences between AUC's of the deep learning model and the radiologists (p value > 0.05). The model on the lateral dataset resulted in higher AUC compared to the model with four projection datasets. Using deep learning it is possible to achieve expert level diagnostic accuracy in elbow joint effusion classification in pediatric and adult radiographs. Deep learning used in this study can classify joint effusion in radiographs and can be used in image interpretation as an aid for radiologists

    The Long Life of Birds: The Rat-Pigeon Comparison Revisited

    Get PDF
    The most studied comparison of aging and maximum lifespan potential (MLSP) among endotherms involves the 7-fold longevity difference between rats (MLSP 5y) and pigeons (MLSP 35y). A widely accepted theory explaining MLSP differences between species is the oxidative stress theory, which purports that reactive oxygen species (ROS) produced during mitochondrial respiration damage bio-molecules and eventually lead to the breakdown of regulatory systems and consequent death. Previous rat-pigeon studies compared only aspects of the oxidative stress theory and most concluded that the lower mitochondrial superoxide production of pigeons compared to rats was responsible for their much greater longevity. This conclusion is based mainly on data from one tissue (the heart) using one mitochondrial substrate (succinate). Studies on heart mitochondria using pyruvate as a mitochondrial substrate gave contradictory results. We believe the conclusion that birds produce less mitochondrial superoxide than mammals is unwarranted
    corecore