22 research outputs found

    High-throughput volatilome fingerprint using PTR–ToF–MS shows species-specific patterns in Mortierella and closely related genera

    Get PDF
    In ecology, Volatile Organic Compounds (VOCs) have a high bioactive and signaling potential. VOCs are not only metabolic products, but are also relevant in microbial cross talk and plant interaction. Here, we report the first large-scale VOC study of 13 different species of Mortierella sensu lato (s.l.) isolated from a range of different alpine environments. Proton Transfer Reaction–Time-of-Flight Mass Spectrometry (PTR–ToF–MS) was applied for a rapid, high-throughput and non-invasive VOC fingerprinting of 72 Mortierella s.l. isolates growing under standardized conditions. Overall, we detected 139 mass peaks in the headspaces of all 13 Mortierella s.l. species studied here. Thus, Mortierellas.l. species generally produce a high number of different VOCs. Mortierella species could clearly be discriminated based on their volatilomes, even if only high-concentration mass peaks were considered. The volatilomes were partially phylogenetically conserved. There were no VOCs produced by only one species, but the relative concentrations of VOCs differed between species. From a univariate perspective, we detected mass peaks with distinctively high concentrations in single species. Here, we provide initial evidence that VOCs may provide a competitive advantage and modulate Mortierella s.l. species distribution on a global scal

    Insights Into Culturomics of the Rumen Microbiome

    Get PDF
    Cultivation of undescribed rumen microorganisms is one of the most important tasks in rumen microbiology. In this study, we aimed to discover the potential of culturomics for characterizing the rumen microbiome and for identifying factors, specifically sample dilution and media type, which affect microbial richness on agar plates. Our cultivation experiment captured 23% of all operational taxonomic units (OTUs) found in the rumen microbiome in this study. The use of different media increased the number of cultured OTUs by up to 40%. Sample dilution had the strongest effect on increasing richness on the plates, while abundance and phylogeny were the main factors determining cultivability of rumen microbes. Our findings from phylogenetic analysis of cultured OTUs on the lower branches of the phylogenetic tree suggest that multifactorial traits govern cultivability. Interestingly, most of our cultured OTUs belonged to the rare rumen biosphere. These cultured OTUs could not be detected in the rumen microbiome, even when we surveyed it across a 38 rumen microbiome samples. These findings add another unique dimension to the complexity of the rumen microbiome and suggest that a large number of different organisms can be cultured in a single cultivation effort

    Special Issue on ‘Hide and Seek of Soil Microbes—Who Is Where with Whom and Why?’

    No full text
    Our question posed for and used as title of the special issue ‘Hide and Seek of Soil Microbes’–Who is Where with Whom and Why [...]</i

    The molecular information about deadwood bacteriomes partly depends on the targeted environmental DNA

    Get PDF
    Microbiome studies mostly rely on total DNA extracts obtained directly from environmental samples. The total DNA consists of both intra- and extracellular DNA, which differ in terms of their ecological interpretation. In the present study, we have investigated for the first time the differences among the three DNA types using microbiome sequencing of Picea abies deadwood logs (Hunter decay classes I, III, and V). While the bacterial compositions of all DNA types were comparable in terms of more abundant organisms and mainly depended on the decay class, we found substantial differences between DNA types with regard to less abundant amplicon sequence variants (ASVs). The analysis of the sequentially extracted intra- and extracellular DNA fraction, respectively, increased the ecological depth of analysis compared to the directly extracted total DNA pool. Both DNA fractions were comparable in proportions and the extracellular DNA appeared to persist in the P. abies deadwood logs, thereby causing its masking effect. Indeed, the extracellular DNA masked the compositional dynamics of intact cells in the total DNA pool. Our results provide evidence that the choice of DNA type for analysis might benefit a study’s answer to its respective ecological question. In the deadwood environment researched here, the differential analysis of the DNA types underlined the relevance of Burkholderiales, Rhizobiales and other taxa for P. abies deadwood decomposition and revealed that the role of Acidobacteriota under this scenario might be underestimated, especially compared to Actinobacteriota.Ministerio de Economía, Industria y Competitividad | Ref. RYC-2016-2123

    Special Issue on &lsquo;Hide and Seek of Soil Microbes&mdash;Who Is Where with Whom and Why?&rsquo;

    No full text
    Our question posed for and used as title of the special issue &lsquo;Hide and Seek of Soil Microbes&rsquo;&ndash;Who is Where with Whom and Why [...

    Methods for Studying Bacterial–Fungal Interactions in the Microenvironments of Soil

    No full text
    Due to their small size, microorganisms directly experience only a tiny portion of the environmental heterogeneity manifested in the soil. The microscale variations in soil properties constrain the distribution of fungi and bacteria, and the extent to which they can interact with each other, thereby directly influencing their behavior and ecological roles. Thus, to obtain a realistic understanding of bacterial–fungal interactions, the spatiotemporal complexity of their microenvironments must be accounted for. The objective of this review is to further raise awareness of this important aspect and to discuss an overview of possible methodologies, some of easier applicability than others, that can be implemented in the experimental design in this field of research. The experimental design can be rationalized in three different scales, namely reconstructing the physicochemical complexity of the soil matrix, identifying and locating fungi and bacteria to depict their physical interactions, and, lastly, analyzing their molecular environment to describe their activity. In the long term, only relevant experimental data at the cell-to-cell level can provide the base for any solid theory or model that may serve for accurate functional prediction at the ecosystem level. The way to this level of application is still long, but we should all start small

    Microbiota in a cooling-lubrication circuit and an option for controlling triethanolamine biodegradation

    No full text
    <p>Cooling and lubrication agents like triethanolamine (TEA) are essential for many purposes in industry. Due to biodegradation, they need continuous replacement, and byproducts of degradation may be toxic. This study investigates an industrial (1,200 m³) cooling-lubrication circuit (CLC) that has been in operation for 20 years and is supposedly in an ecological equilibrium, thus offering a unique habitat. Next-generation (Illumina Miseq 16S rRNA amplicon) sequencing was used to profile the CLC-based microbiota and relate it to TEA and bicine dynamics at the sampling sites, influent, machine rooms, biofilms and effluent. <i>Pseudomonas pseudoalcaligenes</i> dominated the effluent and influent sites, while <i>Alcaligenes faecalis</i> dominated biofilms, and both species were identified as the major TEA degrading bacteria. It was shown that a 15 min heat treatment at 50°C was able to slow down the growth of both species, a promising option to control TEA degradation at large scale.</p

    Fungal communities and their association with nitrogen-fixing bacteria affect early decomposition of Norway spruce deadwood

    Get PDF
    Deadwood decomposition is relevant in nature and wood inhabiting fungi (WIF) are its main decomposers. However, climate influence on WIF community and their interactions with bacteria are poorly understood. Therefore, we set up an in-field mesocosm experiment in the Italian Alps and monitored the effect of slope exposure (north- vs. south-facing slope) on the decomposition of Picea abies wood blocks and their microbiome over two years. Unlike fungal richness and diversity, we observed compositional and functional differences in the WIF communities as a function of exposure. Wood-degrading operational taxonomic units (OTUs) such as Mycena, and mycorrhizal and endophytic OTUs were characteristic of the south-facing slope. On the north-facing one, Mucoromycota, primarily Mucor, were abundant and mixotrophic basidiomycetes with limited lignin-degrading capacities had a higher prevalence compared to the southern slope. The colder, more humid conditions and prolonged snow-coverage at north exposure likely influenced the development of the wood-degrading microbial communities. Networks between WIF and N2-fixing bacteria were composed of higher numbers of interacting microbial units and showed denser connections at the south-facing slope. The association of WIF to N2-fixing Burkholderiales and Rhizobiales could have provided additional competitive advantages, especially for early wood colonization

    Fungal communities and their association with nitrogen-fixing bacteria affect early decomposition of Norway spruce deadwood

    Get PDF
    Deadwood decomposition is relevant in nature and wood inhabiting fungi (WIF) are its main decomposers. However, climate influence on WIF community and their interactions with bacteria are poorly understood. Therefore, we set up an in-field mesocosm experiment in the Italian Alps and monitored the effect of slope exposure (north- vs. south-facing slope) on the decomposition of Picea abies wood blocks and their microbiome over two years. Unlike fungal richness and diversity, we observed compositional and functional differences in the WIF communities as a function of exposure. Wood-degrading operational taxonomic units (OTUs) such as Mycena, and mycorrhizal and endophytic OTUs were characteristic of the south-facing slope. On the north-facing one, Mucoromycota, primarily Mucor, were abundant and mixotrophic basidiomycetes with limited lignin-degrading capacities had a higher prevalence compared to the southern slope. The colder, more humid conditions and prolonged snow-coverage at north exposure likely influenced the development of the wood-degrading microbial communities. Networks between WIF and N2-fixing bacteria were composed of higher numbers of interacting microbial units and showed denser connections at the south-facing slope. The association of WIF to N2-fixing Burkholderiales and Rhizobiales could have provided additional competitive advantages, especially for early wood colonization.Ministerio de Economía, Industria y Competitividad | Ref. RYC-2016–2123
    corecore